Advertisement

Wireless Networks

, Volume 11, Issue 5, pp 571–579 | Cite as

Connectivity of Wireless Multihop Networks in a Shadow Fading Environment

  • Christian Bettstetter
  • Christian Hartmann
Article

Abstract

This article analyzes the connectivity of multihop radio networks in a log-normal shadow fading environment. Assuming the nodes have equal transmission capabilities and are randomly distributed according to a homogeneous Poisson process, we give a tight lower bound for the minimum node density that is necessary to obtain an almost surely connected subnetwork on a bounded area of given size. We derive an explicit expression for this bound, compute it in a variety of scenarios, and verify its tightness by simulation. The numerical results can be used for the practical design and simulation of wireless sensor and ad hoc networks. In addition, they give insight into how fading affects the topology of multihop networks. It is explained why a high fading variance helps the network to become connected.

Keywords

wireless multihop networks wireless sensor networks ad hoc networking connectivity node isolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Bettstetter, Mobility modeling in wireless networks: Categorization, smooth movement, and border effects. ACM Mobile Computing and Commun. Rev. 5(3) (2001) 55–67.Google Scholar
  2. [2]
    C. Bettstetter, On the minimum node degree and connectivity of a wireless multihop network, in: Proc. ACM Intern. Symp. on Mobile Ad Hoc Netw. and Comp. (MobiHoc), Lausanne, Switzerland (June 2002).Google Scholar
  3. [3]
    C. Bettstetter, On the connectivity of ad hoc networks, The Computer Journal 47(4) (2004) 432–447. Oxford University Press.CrossRefGoogle Scholar
  4. [4]
    C. Bettstetter and C. Hartmann, Connectivity of wireless multihop networks in a shadow fading environment, in: Proc. ACM Intern. Workshop on Modeling, Analysis, and Sim. of Wireless and Mobile Systems (MSWiM), San Diego, USA (Sept. 2003).Google Scholar
  5. [5]
    B. Bollob’as, Modern Graph Theory (Springer, 1998).Google Scholar
  6. [6]
    L. Booth, J. Bruck, M. Cook and M. Franceschetti, Ad hoc wireless networks with noisy links, in: Proc. IEEE Intern. Symp. on Information Theory (ISIT), Yokohama, Japan (June 2003), pp. 386.Google Scholar
  7. [7]
    Y.-C. Cheng and T.G. Robertazzi, Critical connectivity phenomena in multihop radio models, IEEE Trans. Commun. 37(7) (1989) 770–777.CrossRefGoogle Scholar
  8. [8]
    D.J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes (Springer, 1988).Google Scholar
  9. [9]
    M. Desai and D. Manjunath, On the connectivity in finite ad hoc networks, IEEE Comm. Letters 6 (2002) 437–439.CrossRefGoogle Scholar
  10. [10]
    O. Dousse, F. Baccelli and P. Thiran, Impact of interferences on connectivity in ad hoc networks, in: Proc. IEEE Infocom, San Francisco, USA (Apr. 2003).Google Scholar
  11. [11]
    O. Dousse, P. Thiran and M. Hasler, Connectivity in ad-hoc and hybrid networks, in: Proc. IEEE Infocom, New York, USA (June 2002).Google Scholar
  12. [12]
    P. Erdös and A. Rènyi, On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960) 17–61.Google Scholar
  13. [13]
    N. Geng and W. Wiesbeck, Planungsmethoden für die Mobilkommunikation (Springer, 1998).Google Scholar
  14. [14]
    I. Gruber and H. Li, Path expiration times in mobile ad hoc networks, in: Proc. European Personal Mobile Commun. Conf. (EPMCC), Glasgow, Britain (April 2003).Google Scholar
  15. [15]
    P. Gupta and P.R. Kumar, Critical power for asymptotic connectivity in wireless networks, in: Stochastic Analysis, Control, Optimization and Applications, (Birkhäuser, 1998), pp. 547–566.Google Scholar
  16. [16]
    R. Jain, A. Puri and R. Sengupta, Geographical routing using partial information for wireless ad hoc networks, IEEE Personal Commun. Mag. 8(1) (2001) 48–57.CrossRefGoogle Scholar
  17. [17]
    M.K. Marina and S.R. Das, On-demand multipath distance vector routing in ad hoc networks, in: Proc. Intern. Conf. for Netw. Procotols (ICNP), Riverside, USA (Nov. 2001).Google Scholar
  18. [18]
    M.K. Marina and S.R. Das, Routing performance in the presence of unidirectional links in multihop wireless networks, in: Proc. ACM Intern. Symp. on Mobile Ad Hoc Netw. and Comp. (MobiHoc), Lausanne, Switzerland (June 2002).Google Scholar
  19. [19]
    A.B. McDonald and T. Znati, A path availability model for wireless ad-hoc networks, in: Proc. IEEE Wireless Commun. and Netw. Conf. (WCNC), New Orleans, USA (Sept. 1999).Google Scholar
  20. [20]
    R. Meester and R. Roy, Continuum Percolation (Cambridge University Press, 1996).Google Scholar
  21. [21]
    M.D. Penrose, The longest edge of the random minimal spanning tree. Annals of Applied Probability 7(2) (1997) 340–361.CrossRefGoogle Scholar
  22. [22]
    P. Piret, On the connectivity of radio networks, IEEE Trans. Inform. Theory 37(5) (1991) 1490–1492.CrossRefGoogle Scholar
  23. [23]
    R. Ramanathan and R. Rosales-Hain, Topology control of multihop wireless networks using transmit power adjustment, in: Proc. IEEE Infocom, Tel Aviv, Israel (March 2000).Google Scholar
  24. [24]
    T.S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall, 1996).Google Scholar
  25. [25]
    N. Sadagopan, F. Bai, B. Krishnamachari and A. Helmy, PATHS: Analysis of path duration statistics and their impact on reactive MANET routing protocols, in: Proc. ACM Intern. Symp. on Mobile Ad Hoc Netw. and Comp. (MobiHoc), Annapolis, USA (June 2003).Google Scholar
  26. [26]
    P. Santi and D. M. Blough, The critical transmitting range for connectivity in sparse wireless ad hoc networks, IEEE Trans. Mobile Comput. 2(1) (2003) 25–39.CrossRefGoogle Scholar
  27. [27]
    P. Santi, D.M. Blough and F. Vainstein, A probabilistic analysis for the radio range assignment problem in ad hoc networks, in: Proc. ACM Intern. Symp. on Mobile Ad Hoc Netw. and Comp. (MobiHoc), Long Beach, USA (Oct. 2001).Google Scholar
  28. [28]
    M. Takai, J. Martin and R. Bagrodia, Effects of wireless physical layer modeling in mobile ad hoc networks, in: Proc. ACM Intern. Symp. on Mobile Ad Hoc Netw. and Comp. (MobiHoc), Long Beach, USA (Oct. 2001).Google Scholar
  29. [29]
    M. Zorzi and S. Pupolin, Optimum transmission ranges in multihop packet radio networks in the presence of fading, IEEE Trans. Commun. 43(7) (1995) 2201–2205.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.DoCoMo Euro-Labs, Future Networking LabMunichGermany
  2. 2.Institute of Communication NetworksTechnische Universität MünchenMunichGermany

Personalised recommendations