Wireless Networks

, Volume 11, Issue 4, pp 363–382 | Cite as

A Receiver-Centric Transport Protocol for Mobile Hosts with Heterogeneous Wireless Interfaces

  • Kyu-Han Kim
  • Yujie Zhu
  • Raghupathy Sivakumar
  • Hung-Yun Hsieh

Abstract

Numerous transport protocols have been proposed in related work for use by mobile hosts over wireless environments. A common theme among the design of such protocols is that they specifically address the distinct characteristics of the last-hop wireless link, such as random wireless errors, round-trip time variations, blackouts, handoffs, etc. In this paper, we argue that due to the defining role played by the wireless link on a connection’s performance, locating the intelligence of a transport protocol at the mobile host that is adjacent to the wireless link can result in distinct performance advantages. To this end, we present a receiver-centric transport protocol called RCP (Reception Control Protocol) that is a TCP clone in its general behavior, but allows for better congestion control, loss recovery, and power management mechanisms compared to sender-centric approaches. More importantly, in the context of recent trends where mobile hosts are increasingly being equipped with multiple interfaces providing access to heterogeneous wireless networks, we show that a receiver-centric protocol such as RCP can enable a powerful and comprehensive transport layer solution for such multi-homed hosts. Specifically, we describe how RCP can be used to provide: (i) a scalable solution to support interface specific congestion control for a single active connection; (ii) seamless server migration capability during handoffs; and (iii) effective bandwidth aggregation when receiving data through multiple interfaces, either from one server, or from multiple replicated servers. We use both packet level simulations, and real Internet experiments to evaluate the proposed protocol.

heterogeneous wireless networks multi-homed mobile host seamless handoff server migration bandwidth aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akamai Technologies, Akamai Accelerated Network Program, http://www.akamai.com.
  2. [2]
    B. Bakshi, P. Krishna, N. Vaidya and D. Pradhan, Improving performance of TCP over wireless networks, in: Proceedings of IEEE ICDCS, Baltimore, MD, USA (May 1997).Google Scholar
  3. [3]
    H. Balakrishnan, V. Padmanabhan, S. Seshana and R. Katz, A comparison of mechanisms for improving TCP performance over wireless links, IEEE/ACM Transactions on Networking 5(6) (1997) 756–769.CrossRefGoogle Scholar
  4. [4]
    S. Biaz and N. Vaidya, Discriminating congestion losses from wireless losses using inter-arrival times at the receiver, in: Proceedings of IEEE ASSET, Richardson, TX, USA (Mar. 1999).Google Scholar
  5. [5]
    E. Blanton, M. Allman, K. Fall and L. Wang, A conservative SACK-based loss recovery algorithm for TCP, IETF Internet Draft; draft-allman-tcp-sack-13.txt (Oct. 2002).Google Scholar
  6. [6]
    D. Bovet and M. Cesati, Understanding the Linux Kernel. O’Reilly Associates: Sebastopol, CA, USA (Dec. 2002).Google Scholar
  7. [7]
    D. Clark, V. Jacobson, J. Romkey and H. Salwen, An analysis of TCP processing overhead, IEEE Communications Magazine 27(6) (1989) 23–39.CrossRefGoogle Scholar
  8. [8]
    D. Clark, M. Lambert and L. Zhang, NETBLT: A high throughput transport protocol, in: Proceedings of ACM SIGCOMM, Stowe, VT, USA (Aug. 1987).Google Scholar
  9. [9]
    ETSI, BRAN HIPERLAN/2; Requirements and Architecture for Internetworking between HIPERLAN/2 and 3rd Generation Cellular Systems, TR 101 957 (Aug. 2001).Google Scholar
  10. [10]
    S. Floyd and T. Henderson, The NewReno modification to TCP’s fast recovery algorithm, IN: IETF RFC 2582, (Apr. 1999).Google Scholar
  11. [11]
    T. Goff, J. Moronski and D. Phatak, Freeze-TCP: A true end-to-end TCP enhancement mechanism for mobile environments, in: Proceedings of IEEE INFOCOM, Tel-Aviv, Israel (Mar. 2000).Google Scholar
  12. [12]
    R. Gupta, M. Chen, S. McCanne and J. Walrand, A receiver-driven transport protocol for the web, in: Proceedings of INFORMS Telecommunications Conference, Boca Raton, FL, USA (Mar. 2000).Google Scholar
  13. [13]
    M. Handley, S. Floyd, J. Pahdye and J. Widmer, Equation-based congestion control for unicast applications, in: Proceedings of ACM SIGCOMM, Stockholm, Sweden (Aug. 2000).Google Scholar
  14. [14]
    T. Henderson and R. Katz, Satellite transport protocol (STP): An SSCOP-based transport protocol for datagram satellite networks, in: Proceedings of Workshop on Satellite-Based Information Services, Budapest, Hungary (Oct. 1997).Google Scholar
  15. [15]
    H.-Y. Hsieh and R. Sivakumar, A transport layer approach for achieving aggregate bandwidths on multi-homed mobile hosts, in: Proceedings of ACM MOBICOM, Atlanta, GA, USA (Sept. 2002).Google Scholar
  16. [16]
    IEEE, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, (ANSI/IEEE Standard 802.11, Aug. 1999).Google Scholar
  17. [17]
    V. Jacobson, R. Braden and D. Borman, TCP extensions for high performance, in: IETF RFC 1323 (May 1992).Google Scholar
  18. [18]
    J. Kay and J. Pasquale, Profiling and reducing processing overheads in TCP/IP, IEEE/ACM Transactions on Networking 4(6) (1996) 817–828.CrossRefGoogle Scholar
  19. [19]
    R. Krashinsky and H. Balakrishnan, Minimizing energy for wireless web access with bounded slowdown, in: Proceedings of ACM MOBICOM, Atlanta, GA, USA (Sept. 2002).Google Scholar
  20. [20]
    L. Magalhaes and R. Kravets, Transport level mechanisms for bandwidth aggregation on mobile hosts, in: Proceedings of IEEE ICNP, Riverside, CA USA (Nov. 2001).Google Scholar
  21. [21]
    S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi and R. Wang, TCP-Westwood: Bandwidth estimation for enhanced transport over wireless links, in: Proceedings of ACM MOBICOM, Rome, Italy (July 2001).Google Scholar
  22. [22]
    M. Mathis and J. Mahdavi, Forward acknowledgement: Refining TCP congestion control, in: Proceedings of ACM SIGCOMM, Palo Alto, CA, USA (Aug. 1996).Google Scholar
  23. [23]
    M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, TCP selective acknowledgement options, in: IETF RFC 2018 (Oct. 1996).Google Scholar
  24. [24]
    P. Mehra, C. De Vleeschouwer and A. Zakhor, Receiver-driven bandwidth sharing for TCP, in: Proceedings of IEEE INFOCOM, San Francisco, CA, USA (Apr. 2003).Google Scholar
  25. [25]
    J. Postel, Transmission control protocol, in: IETF RFC 793 (Sept. 1981).Google Scholar
  26. [26]
    M. Riegel and M. Tuexen, Mobile SCTP, IETF Internet Draft; draft-riegel-tuexen-mobile-sctp-02.txt (Feb. 2003).Google Scholar
  27. [27]
    A. Sanmateu, L. Morand, E. Bustos, S. Tessier, F. Paint and A. Sollund, Using Mobile IP for provision of seamless handoff between heterogeneous access networks, or how a network can support the always-on concept, in: Proceedings of EURESCOM Summit, Heidelberg, Germany (Nov. 2001).Google Scholar
  28. [28]
    T. Simunic, L. Benini, P. Glynn and G. De Micheli, Dynamic power management for portable systems, in: Proceedings of ACM MOBICOM, Boston, MA, USA (Aug. 2000).Google Scholar
  29. [29]
    H. Singh and S. Singh, Energy consumption of TCP Reno, Newreno, and SACK in multi-hop wireless networks, in: Proceedings of ACM SIGMETRICS, Marina Del Rey, CA, USA (June 2002).Google Scholar
  30. [30]
    P. Sinha, N. Venkitaraman, R. Sivakumar and V. Bharghavan, WTCP: A reliable transport protocol for wireless wide-area networks, in: Proceedings of ACM MOBICOM, Seattle, WA, USA (Aug. 1999).Google Scholar
  31. [31]
    A. Snoeren, D. Andersen and H. Balakrishnan, Fine-grained failover using connection migration, in: Proceedings of USENIX USITS, San Francisco, CA, USA (March 2001).Google Scholar
  32. [32]
    A. Snoeren and H. Balakrishnan, An end-to-end approach to host mobility, in: Proceedings of ACM MOBICOM, Boston, MA, USA (Aug. 2000).Google Scholar
  33. [33]
    N. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson and B. Bershad, Receiver based management of low bandwidth access links, in: Proceedings of IEEE INFOCOM, Tel-Aviv, Israel (March 2000).Google Scholar
  34. [34]
    M. Stemm and R. Katz, Vertical handoffs in wireless overlay networks, Mobile Networks and Applications (MONET) 3(4) (1998) 335–350.Google Scholar
  35. [35]
    F. Sultan, K. Srinivasan, D. Iyer and L. Iftode, Migratory TCP: Connection migration for service continuity in the Internet, in: Proceedings of IEEE ICDCS, Vienna, Austria (July 2002).Google Scholar
  36. [36]
    The Network Simulator, ns-2, http://www.isi.edu/nsnam/ns.
  37. [37]
    V. Tsaoussidis, H. Badr, X. Ge and K. Pentikousis, Energy/Throughput tradeoffs of TCP error control strategies, in: Proceedings of IEEE ISCC, Antibes, France (July 2000).Google Scholar
  38. [38]
    V. Tsaoussidis and C. Zhang, TCP-Real: Receiver-oriented congestion control, Computer Networks 40(4) (2002) 477–497.CrossRefGoogle Scholar
  39. [39]
    G. Wright and W. Stevens, TCP/IP Illustrated, Volume 2. Addison-Wesley Publishing Company:Reading, MA, USA (Oct. 1997).Google Scholar
  40. [40]
    M. Zorzi and R. Rao, Is TCP energy efficient? in: Proceedings of IEEE MoMuC, San Diego, CA, USA (Nov. 1999).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Kyu-Han Kim
    • 1
  • Yujie Zhu
    • 1
  • Raghupathy Sivakumar
    • 1
  • Hung-Yun Hsieh
    • 2
  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electrical EngineeringGraduate Institute of Communication and Engineering, National Taiwan UniversityTaipeiR.O.C.

Personalised recommendations