Advertisement

Recent advances of pH homeostasis mechanisms in Corynebacterium glutamicum

  • Jing Guo
  • Zhenping Ma
  • Jinshan Gao
  • Jinhua Zhao
  • Liang Wei
  • Jun Liu
  • Ning XuEmail author
Review
  • 88 Downloads

Abstract

Corynebacterium glutamicum is generally regarded as a safe microorganism, and widely used in the large-scale production of various amino acids and organic acids, such as l-glutamate, l-lysine and succinic acid. During the process of industrial fermentation, C. glutamicum is usually exposed to varying environmental stresses, such as variations in pH, salinity, temperature, and osmolality. Among them, pH fluctuations are regarded as one of the most frequent environmental stresses in microbial fermentation. In this review, we summarize the current knowledge of pH homeostasis mechanisms adopted by C. glutamicum for coping with low acidic pH and high alkaline pH stresses. Facing with low pH environments, C. glutamicum develops a variety of strategies to maintain intracellular pH homeostasis, such as lowering intracellular reactive oxygen species, the improvement of potassium transport, the regulation of mycothiol-related pathways, as well as the repression of sulfur assimilation. While during alkaline pH stresses, the Mrp-type Na+/H+ antiporters are shown to play a dominant role in conferring C. glutamicum cells resistance to alkaline pH. Furthermore, we also discuss the general strategies and prospects on metabolic engineering of C. glutamicum to improve alkaline or acid resistance.

Keywords

pH homeostasis Acid-alkaline resistance Metabolic engineering Corynebacterium glutamicum 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0901000), the National Natural Science Foundation of China (Grant Nos. 31972061, 31801526), and the Natural Science Foundation of Tianjin City (Grant Nos. 17JCYBJC24000, 17JCQNJC09600).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

References

  1. Aertsen A, Michiels CW (2004) Stress and how bacteria cope with death and survival. Crit Rev Microbiol 30:263–273.  https://doi.org/10.1080/10408410490884757 CrossRefPubMedGoogle Scholar
  2. Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedPubMedCentralGoogle Scholar
  3. Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171.  https://doi.org/10.1016/j.tim.2007.02.005 CrossRefPubMedGoogle Scholar
  4. Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20.  https://doi.org/10.1111/j.1541-4337.2004.tb00057.x CrossRefGoogle Scholar
  5. Becker J, Rohles CM, Wittmann C (2018) Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 50:122–141.  https://doi.org/10.1016/j.ymben.2018.07.008 CrossRefPubMedGoogle Scholar
  6. Beckers G, Bendt AK, Kramer R, Burkovski A (2004) Molecular identification of the urea uptake system and transcriptional analysis of urea transporter- and urease-encoding genes in Corynebacterium glutamicum. J Bacteriol 186:7645–7652.  https://doi.org/10.1128/Jb.186.22.7645-7652.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Broadbent JR, Larsen RL, Deibel V, Steele JL (2010) Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol 192:2445–2458.  https://doi.org/10.1128/JB.01618-09 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163–173.  https://doi.org/10.1016/S0168-1605(97)00068-8 CrossRefPubMedGoogle Scholar
  9. Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY (2019) Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol 37:817–837.  https://doi.org/10.1016/j.tibtech.2019.01.003 CrossRefPubMedGoogle Scholar
  10. Cotter PD, Hill C (2003) Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453.  https://doi.org/10.1128/mmbr.67.3.429-453.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Follmann M, Becker M, Ochrombel I, Ott V, Kramer R, Marin K (2009a) Potassium transport in Corynebacterium glutamicum is facilitated by the putative channel protein CglK, which is essential for pH homeostasis and growth at acidic pH. J Bacteriol 191:2944–2952.  https://doi.org/10.1128/Jb.00074-09 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Follmann M et al (2009b) Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis. BMC Genom 10:621.  https://doi.org/10.1186/1471-2164-10-621 CrossRefGoogle Scholar
  13. Foster JW (2004) Escherichia coli acid resistance: Tales of an amateur acidophile. Nat Rev Microbiol 2:898–907.  https://doi.org/10.1038/nrmicro1021 CrossRefPubMedGoogle Scholar
  14. Fozo EA, Quivey RG (2004) Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70:929–936.  https://doi.org/10.1128/aem.70.2.929-936.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Frees D, Savijoki K, Varmanen P, Ingmer H (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 63:1285–1295.  https://doi.org/10.1111/j.1365-2958.2007.05598.x CrossRefPubMedGoogle Scholar
  16. Gao C, Xu P, Ye C, Chen X, Liu L (2019) Genetic circuit-assisted smart microbial engineering. Trends Microbiol.  https://doi.org/10.1016/j.tim.2019.07.005 CrossRefPubMedGoogle Scholar
  17. Giotis ES, McDowell DA, Blair IS, Wilkinson BJ (2007) Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes. Appl Environ Microbiol 73:997–1001.  https://doi.org/10.1128/AEM.00865-06 CrossRefPubMedGoogle Scholar
  18. Grogan DW, Cronan JE Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441PubMedPubMedCentralGoogle Scholar
  19. Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: Lessons from their adaptations. Biochim Biophys Acta Bioenerg 1797:1362–1377.  https://doi.org/10.1016/j.bbabio.2010.02.028 CrossRefGoogle Scholar
  20. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109.  https://doi.org/10.1007/s00253-003-1328-1 CrossRefPubMedGoogle Scholar
  21. Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229.  https://doi.org/10.1111/j.1744-7909.2008.00736.x CrossRefPubMedGoogle Scholar
  22. Ito M, Morino M, Krulwich TA (2017) Mrp antiporters have important roles in diverse bacteria and archaea. Front Microbiol 8:2325.  https://doi.org/10.3389/Fmicb.2017.02325 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ito M, Xu HX, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci USA 101:10566–10571.  https://doi.org/10.1073/pnas.0402692101 CrossRefPubMedGoogle Scholar
  24. Jakob K, Satorhelyi P, Lange C, Wendisch VF, Silakowski B, Scherer S, Neuhaus K (2007) Gene expression analysis of Corynebacterium glutamicum subjected to long-term lactic acid adaptation. J Bacteriol 189:5582–5590.  https://doi.org/10.1128/JB.00082-07 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jia H, Fan Y, Feng X, Li C (2014) Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol 2:44.  https://doi.org/10.3389/fbioe.2014.00044 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kanjee U, Houry WA (2013) Mechanisms of acid resistance in Escherichia coli. Annu Rev Microbiol 67:65–81.  https://doi.org/10.1146/annurev-micro-092412-155708 CrossRefPubMedGoogle Scholar
  27. Kim BH, Kim S, Kim HG, Lee J, Lee IS, Park YK (2005) The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology 151:209–218.  https://doi.org/10.1099/mic.0.27265-0 CrossRefPubMedGoogle Scholar
  28. Kobayashi H, Suzuki T, Unemoto T (1986) Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton-translocating Atpase. J Biol Chem 261:627–630PubMedGoogle Scholar
  29. Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260.  https://doi.org/10.1111/j.1365-2958.2009.06842.x CrossRefPubMedPubMedCentralGoogle Scholar
  30. Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343.  https://doi.org/10.1038/nrmicro2549 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lee JY, Na YA, Kim ES, Lee HS, Kim P (2016) The actinobacterium Corynebacterium glutamicum, an industrial workhorse. J Microbiol Biotechnol 26:1341–1341.  https://doi.org/10.4014/jmb.2016.2607.1341 CrossRefPubMedGoogle Scholar
  32. Lemme A, Sztajer H, Wagner-Dobler I (2010) Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutants. BMC Microbiol 10:58.  https://doi.org/10.1186/1471-2180-10-58 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu YB et al (2016) Mycothiol protects Corynebacterium glutamicum against acid stress via maintaining intracellular pH homeostasis, scavenging ROS, and S-mycothiolating MetE. J Gen Appl Microbiol 62:144–153.  https://doi.org/10.2323/jgam.2016.02.001 CrossRefPubMedGoogle Scholar
  34. Liu YP, Tang HZ, Lin ZL, Xu P (2015) Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 33:1484–1492.  https://doi.org/10.1016/j.biotechadv.2015.06.001 CrossRefPubMedGoogle Scholar
  35. Lu PL, Ma D, Chen YL, Guo YY, Chen GQ, Deng HT, Shi YG (2013) L-glutamine provides acid resistance for Escherichia coli through enzymatic release of ammonia. Cell Res 23:635–644.  https://doi.org/10.1038/cr.2013.13 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lund P, Tramonti A, De Biase D (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38:1091–1125.  https://doi.org/10.1111/1574-6976.12076 CrossRefPubMedGoogle Scholar
  37. Michel A, Koch-Koerfges A, Krumbach K, Brocker M, Bott M (2015) Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation. Appl Environ Microbiol 81:7496–7508.  https://doi.org/10.1128/Aem.02413-15 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mykytczuk NC, Trevors JT, Ferroni GD, Leduc LG (2010) Cytoplasmic membrane fluidity and fatty acid composition of Acidithiobacillus ferrooxidans in response to pH stress. Extremophiles 14:427–441.  https://doi.org/10.1007/s00792-010-0319-2 CrossRefPubMedGoogle Scholar
  39. Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE 5:e10132.  https://doi.org/10.1371/journal.pone.0010132 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Padan E (2008) The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter. Trends Biochem Sci 33:435–443.  https://doi.org/10.1016/j.tibs.2008.06.007 CrossRefPubMedGoogle Scholar
  41. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: New insights. Biochim Biophys Acta Biomembr 1717:67–88.  https://doi.org/10.1016/j.bbamem.2005.09.010 CrossRefGoogle Scholar
  42. Patek M, Nesvera J (2011) Sigma factors and promoters in Corynebacterium glutamicum. J Biotechnol 154:101–113.  https://doi.org/10.1016/j.jbiotec.2011.01.017 CrossRefPubMedGoogle Scholar
  43. Qi YL, Liu H, Chen XL, Liu LM (2019) Engineering microbial membranes to increase stress tolerance of industrial strains. Metab Eng 53:24–34.  https://doi.org/10.1016/j.ymben.2018.12.010 CrossRefPubMedGoogle Scholar
  44. Ryan S, Begley M, Gahan CGM, Hill C (2009) Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol 11:432–445.  https://doi.org/10.1111/j.1462-2920.2008.01782.x CrossRefPubMedGoogle Scholar
  45. Scott DR, Marcus EA, Weeks DL, Sachs G (2002) Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 123:187–195.  https://doi.org/10.1053/gast.2002.34218 CrossRefPubMedGoogle Scholar
  46. Senouci-Rezkallah K, Schmitt P, Jobin MP (2011) Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiol 28:364–372.  https://doi.org/10.1016/j.fm.2010.09.003 CrossRefPubMedGoogle Scholar
  47. Shabala L, Ross T (2008) Cyclopropane fatty acids improve Escherichia coli survival in acidified minimal media by reducing membrane permeability to H+ and enhanced ability to extrude H+. Res Microbiol 159:458–461.  https://doi.org/10.1016/j.resmic.2008.04.011 CrossRefPubMedGoogle Scholar
  48. Si MR et al (2016) Overexpression of mycothiol disulfide reductase enhances Corynebacterium glutamicum robustness by modulating cellular redox homeostasis and antioxidant proteins under oxidative stress. Sci Rep 6:29491.  https://doi.org/10.1038/Srep29491 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Siliakus MF, van der Oost J, Kengen SWM (2017) Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21:651–670.  https://doi.org/10.1007/s00792-017-0939-x CrossRefPubMedPubMedCentralGoogle Scholar
  50. Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79.  https://doi.org/10.1016/S0065-2911(09)05501-5 CrossRefPubMedGoogle Scholar
  51. Sohlenkamp C (2017) Membrane homeostasis in bacteria upon pH challenge. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Springer, Cham, pp 1–13. https://doi.org/10.1007/978-3-319-43676-0_57-1 CrossRefGoogle Scholar
  52. Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184:4246–4258.  https://doi.org/10.1128/Jb.184.15.4246-4258.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Takeno S, Nakamura M, Fukai R, Ohnishi J, Ikeda M (2008) The Cgl1281-encoding putative transporter of the cation diffusion facilitator family is responsible for alkali-tolerance in Corynebacterium glutamicum. Arch Microbiol 190:531–538.  https://doi.org/10.1007/s00203-008-0401-7 CrossRefPubMedGoogle Scholar
  54. Tirosh O, Sigal N, Gelman A, Sahar N, Fluman N, Siemion S, Bibi E (2012) Manipulating the drug/proton antiport stoichiometry of the secondary multidrug transporter MdfA. Proc Natl Acad Sci U S A 109:12473–12478.  https://doi.org/10.1073/pnas.1203632109 CrossRefPubMedPubMedCentralGoogle Scholar
  55. To TMH, Grandvalet C, Alexandre H, Tourdot-Marechal R (2015) Cyclopropane fatty acid synthase from Oenococcus oeni: expression in Lactococcus lactis subsp cremoris and biochemical characterization. Arch Microbiol 197:1063–1074.  https://doi.org/10.1007/s00203-015-1143-y CrossRefPubMedGoogle Scholar
  56. Wang TT et al (2016) Mycothiol peroxidase MPx protects Corynebacterium glutamicum against acid stress by scavenging ROS. Biotechnol Lett 38:1221–1228.  https://doi.org/10.1007/s10529-016-2099-y CrossRefPubMedGoogle Scholar
  57. Wu C, Zhang J, Du G, Chen J (2013) Aspartate protects Lactobacillus casei against acid stress. Appl Microbiol Biotechnol 97:4083–4093.  https://doi.org/10.1007/s00253-012-4647-2 CrossRefPubMedGoogle Scholar
  58. Xu N, Lv HF, Wei L, Liang Y, Ju JS, Liu J, Ma YH (2019) Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum. Appl Microbiol Biotechnol 103:1877–1891.  https://doi.org/10.1007/s00253-018-09585-y CrossRefPubMedGoogle Scholar
  59. Xu N, Wang L, Cheng HJ, Liu QD, Liu J, Ma YH (2016) In vitro functional characterization of the Na+/H+ antiporters in Corynebacterium glutamicum. FEMS Microbiol Lett 363:fnv237.  https://doi.org/10.1093/femsle/fnv237 CrossRefPubMedGoogle Scholar
  60. Xu N, Zheng YY, Wang XC, Krulwich TA, Ma YH, Liu J (2018) The lysine 299 residue endows the multisubunit Mrp1 antiporter with dominant roles in Na+ resistance and pH homeostasis in Corynebacterium glutamicum. Appl Environ Microb 84:e00110–e118.  https://doi.org/10.1128/AEM.00110-18 CrossRefGoogle Scholar
  61. Zhu LJ, Zhu Y, Zhang YP, Li Y (2012) Engineering the robustness of industrial microbes through synthetic biology. Trends Microbiol 20:94–101.  https://doi.org/10.1016/j.tim.2011.12.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinPeople’s Republic of China

Personalised recommendations