Skip to main content

Advertisement

Log in

The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Actinobacteria in the Tsukamurella genus are aerobic, high-GC, Gram-positive mycolata, considered as opportunistic pathogens and isolated from various environmental sources, including sites contaminated with oil, urban or industrial waste and pesticides. Although studies look into xenobiotic biotransformation by Tsukamurella isolates, the relevant enzymes remain uncharacterized. We investigated the arylamine N-acetyltransferase (NAT) enzyme family, known for its role in the xenobiotic metabolism of prokaryotes and eukaryotes. Xenobiotic sensitivity of Tsukamurella paurometabola type strain DSM 20162T was assessed, followed by cloning, recombinant expression and functional characterization of its single NAT homolog (TSUPD)NAT1. The bacterium appeared quite robust against chloroanilines, but more sensitive to 4-anisidine and 2-aminophenol. However, metabolic activity was not evident towards those compounds, presumably due to mechanisms protecting cells from xenobiotic entry. Of the pharmaceutical arylhydrazines tested, hydralazine was toxic, but the bacterium was less sensitive to isoniazid, a drug targeting mycolic acid biosynthesis in mycobacteria. Although (TSUPD)NAT1 protein has an atypical Cys-His-Glu (instead of the expected Cys-His-Asp) catalytic triad, it is enzymatically active, suggesting that this deviation is likely due to evolutionary adaptation potentially serving a different function. The protein was indeed found to use malonyl-CoA, instead of the archetypal acetyl-CoA, as its preferred donor substrate. Malonyl-CoA is important for microbial biosynthesis of fatty acids (including mycolic acids) and polyketide chains, and the corresponding enzymatic systems have common evolutionary histories, also linked to xenobiotic metabolism. This study adds to accummulating evidence suggesting broad phylogenetic and functional divergence of microbial NAT enzymes that goes beyond xenobiotic metabolism and merits investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou Mehrez O, Dossier-Berne F, Legube B (2016) Oxidation of 2-aminophenol to 2-amino-3H-phenoxazin-3-one with monochloramine in aqueous environment: a new method for APO synthesis? Chemosphere 145:464–469

    CAS  PubMed  Google Scholar 

  • Abuhammad A, Lowe ED, McDonough MA, Shaw Stewart PD, Kolek SA, Sim E, Garman EF (2013) Structure of arylamine N-acetyltransferase from Mycobacterium tuberculosis determined by cross-seeding with the homologous protein from M. marinum: triumph over adversity. Acta Crystallogr D 69:1433–1446

    CAS  PubMed  Google Scholar 

  • Anderton MC, Bhakta S, Besra GS, Jeavons P, Eltis LD, Sim E (2006) Characterization of the putative operon containing arylamine N-acetyltransferase (nat) in Mycobacterium bovis BCG. Mol Microbiol 59:181–192

    CAS  PubMed  Google Scholar 

  • Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl 1):5–16

    CAS  PubMed  Google Scholar 

  • Arnold M, Reittu A, von Wright A, Martikainen PJ, Suihko ML (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744

    CAS  PubMed  Google Scholar 

  • Arora PK (2015) Bacterial degradation of monocyclic aromatic amines. Front Microbiol 6:820

    PubMed  PubMed Central  Google Scholar 

  • Bhakta S, Besra GS, Upton AM, Parish T, Sholto-Douglas-Vernon C, Gibson KJC, Knutton S, Gordon S, DaSilva RP, Anderton MC, Sim E (2004) Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target. J Exp Med 199:1191–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boukouvala S (2018) Arylamine N-Acetyltransferase nomenclature. In: Sim E, Laurieri N (eds), Arylamine N-acetyltransferases in health and disease. Singapore, World Scientific Publishing Co Pte Ltd. https://doi.org/10.1142/9789813232013_0016

    Chapter  Google Scholar 

  • Boukouvala S, Fakis G (2005) Arylamine N-acetyltransferases: what we learn from genes and genomes. Drug Metab Rev 37:511–564

    CAS  PubMed  Google Scholar 

  • Brooke EW, Davies SG, Mulvaney AW, Okada M, Pompeo F, Sim E, Vickers RJ, Westwood IM (2003) Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs). Bioorg Med Chem Lett 13:2527–2530

    CAS  PubMed  Google Scholar 

  • Cao H, Ma Q, Chen X, Xu Y (2017) DOOR: a prokaryotic operon database for genome analyses and functional inference. Brief Bioinform. https://doi.org/10.1093/bib/bbx088

    Article  PubMed  Google Scholar 

  • Chen X, Wang L, Du Y, Wu Y, Jia X, Yang Y, Hong B (2011) Design, synthesis and biological evaluation of hydroxamic acid derivatives as potential high density lipoprotein (HDL) receptor CLA-1 up-regulating agents. Molecules 16:9178–9193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiciudean I, Nie Y, Tanase A-M, Stoica I, Wu X-L (2018) Complete genome sequence of Tsukamurella sp. MH1: a wide-chain length alkane-degrading actinomycete. J Biotechnol 268:1–5

    CAS  PubMed  Google Scholar 

  • Cocaign A, Kubiak X, Xu X, Garnier G, Li de la Sierra-Gallay I, Chi-Bui L, Dairou J, Busi F, Abuhammad A, Haouz A, Dupret JM, Herrmann JL, Rodrigues-Lima F (2014) Structural and functional characterization of an arylamine N-acetyltransferase from the pathogen Mycobacterium abscessus: differences from other mycobacterial isoforms and implications for selective inhibition. Acta Crystallogr D 70:3066–3079

    CAS  PubMed  Google Scholar 

  • Collins MD, Smida J, Dorsch M, Stackebrandt E (1988) Tsukamurella gen. nov. Harboring Corynebacterium paurometabolum and Rhodococcus aurantiacus. Int J Syst Bacteriol 38(4):385–391

    CAS  Google Scholar 

  • Cresnar B, Petric S (2011) Cytochrome P450 enzymes in the fungal kingdom. Biochim Biophys Acta 1814:29–35

    CAS  PubMed  Google Scholar 

  • Cronan JE, Thomas J (2009) Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol 459:395–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delomenie C, Fouix S, Longuemaux S, Brahimi N, Bizet C, Picard B, Denamur E, Dupret JM (2001) Identification and functional characterization of arylamine N-acetyltransferases in eubacteria: evidence for highly selective acetylation of 5-aminosalicylic acid. J Bacteriol 183:3417–3427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    CAS  PubMed  Google Scholar 

  • Erdlenbruch BN, Kelly DP, Murrell JC (2001) Alkanesulfonate degradation by novel strains of Achromobacter xylosoxidans, Tsukamurella wratislaviensis and Rhodococcus sp., and evidence for an ethanesulfonate monooxygenase in A. xylosoxidans strain AE4. Arch Microbiol 176:406–414

    CAS  PubMed  Google Scholar 

  • Fullam E, Westwood IM, Anderton MC, Lowe ED, Sim E, Noble MEM (2008) Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J Mol Biol 375:178–191

    CAS  PubMed  Google Scholar 

  • Gago G, Diacovich L, Arabolaza A, Tsai S-C, Gramajo H (2011) Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 35:475–497

    CAS  PubMed  Google Scholar 

  • Gao WT, Hou WD, Zheng MR, Tang LJ (2010) Clean and convenient one-pot synthesis of 4-hydroxycoumarin and 4-hydroxy-2-quinolinone derivatives. Synth Commun. https://doi.org/10.1080/00397910903013713

    Article  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud SMW, Apel R, Bairoch A (2005) Protein identification and analysis tool on the ExPASy server. In: Walker JM (ed) The proteomic protocols handbook, Humana Press, New Jersey

    Google Scholar 

  • Gibson KJC, Gilleron M, Constant P, Brando T, Puzo G, Besra GS, Nigou J (2004) Tsukamurella paurometabola lipoglycan, a new lipoarabinomannan variant with pro-inflammatory activity. J Biol Chem 279:22973–22982

    CAS  PubMed  Google Scholar 

  • Glenn AE, Bacon CW (2009) FDB2 encodes a member of the arylamine N-acetyltransferase family and is necessary for biotransformation of benzoxazolinones by Fusarium verticillioides. J Appl Microbiol 107:657–671

    CAS  PubMed  Google Scholar 

  • Glenn AE, Karagianni EP, Ulndreaj A, Boukouvala S (2010) Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family. FEBS Lett 584:3158–3164

    CAS  PubMed  Google Scholar 

  • Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–S173

    PubMed  Google Scholar 

  • Hadasch A, Meunier B (1999) Oxidation of dichloroanilines and related anilides catalyzed by Iron(III) tetrasulfonatophthalocyanine. Eur J Inorg Chem 12:2319–2325

    Google Scholar 

  • Hall T (1999) BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A (2013) Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar Pollut Bull 73:300–305

    CAS  PubMed  Google Scholar 

  • Hein DW, Boukouvala S, Grant DM, Minchin RF, Sim E (2008) Changes in consensus arylamine N-acetyltransferase gene nomenclature. Pharmacogenet Genomics 18:367–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716

    CAS  PubMed  Google Scholar 

  • Hofstra AH (1994) Metabolism of hydralazine: relevance to drug-induced lupus. Drug Metab Rev 26:485–505

    CAS  PubMed  Google Scholar 

  • Holton SJ, Dairou J, Sandy J, Rodrigues-Lima F, Dupret JM, Noble MEM, Sim E (2005) Structure of Mesorhizobium loti arylamine N-acetyltransferase 1. Acta Crystallogr F 61:14–16

    CAS  Google Scholar 

  • Huang J, Yan R, He J-Y, Wang P (2016) Purification and immobilization of a novel enantioselective lipase from Tsukamurella tyrosinosolvents for efficient resolution of ethyl 2-(2-oxopyrrolidin-1-yl) butyrate. Appl Biochem Biotechnol 180:609–622

    CAS  PubMed  Google Scholar 

  • IARC (2010) IARC monographs on the evaluation of carcinogenic risks to humans. Some aromatic amines, organic dyes, and related exposures, vol 99. IARC, Lyon. https://doi.org/10.1016/S1470-2045(08)70089-5

    Chapter  Google Scholar 

  • Karagianni EP, Kontomina E, Davis B, Kotseli B, Tsirka T, Garefalaki V, Sim E, Glenn AE, Boukouvala S (2015) Homologues of xenobiotic metabolizing N-acetyltransferases in plant-associated fungi: novel functions for an old enzyme family. Sci Rep 5:12900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura A, Graham J, Mushtaq A, Tsiftsoglou SA, Vath GM, Hanna PE, Wagner CR, Sim E (2005) Eukaryotic arylamine N-acetyltransferase. Investigation of substrate specificity by high-throughput screening. Biochem Pharmacol 69:347–359

    CAS  PubMed  Google Scholar 

  • Kemmer G, Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc 5:267–281

    CAS  PubMed  Google Scholar 

  • Kettle AJ, Batley J, Benfield AH, Manners JM, Kazan K, Gardiner DM (2015) Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudograminearum towards wheat. Mol Plant Pathol 16:946–962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein DJ, Boukouvala S, McDonagh EM, Shuldiner SR, Laurieri N, Thorn CF, Altman RB, Klein TE (2016) PharmGKB summary: isoniazid pathway, pharmacokinetics. Pharmacogenet Genomics 26:436–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubiak X, Dervins-Ravault D, Pluvinage B, Chaffotte AF, Gomez-Valero L, Dairou J, Busi F, Dupret J-M, Buchrieser C, Rodrigues-Lima F (2012) Characterization of an acetyltransferase that detoxifies aromatic chemicals in Legionella pneumophila. Biochem J 445:219–228

    CAS  PubMed  Google Scholar 

  • Kubiak X, Li de la Sierra-Gallay I, Chaffotte AF, Pluvinage B, Weber P, Haouz A, Dupret J-M, Rodrigues-Lima F (2013) Structural and biochemical characterization of an active arylamine N-acetyltransferase possessing a non-canonical Cys-His-Glu catalytic triad. J Biol Chem 288:22493–22505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kugler JH, Kraft A, Heissler S, Muhle-Goll C, Luy B, Schwack W, Syldatk C, Hausmann R (2015) Extracellular aromatic biosurfactant produced by Tsukamurella pseudospumae and T. spumae during growth on n-hexadecane. J Biotechnol 211:107–114

    PubMed  Google Scholar 

  • Kugler JH, Muhle-Goll C, Kuhl B, Kraft A, Heinzler R, Kirschhofer F, Henkel M, Wray V, Luy B, Brenner-Weiss G, Lang S, Syldatk C, Hausmann R (2014) Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Appl Microbiol Biotechnol 98:8905–8915

    PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lack NA, Kawamura A, Fullam E, Laurieri N, Beard S, Russell AJ, Evangelopoulos D, Westwood I, Sim E (2009) Temperature stability of proteins essential for the intracellular survival of Mycobacterium tuberculosis. Biochem J 418:369–378

    CAS  PubMed  Google Scholar 

  • Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz239

    Article  PubMed  PubMed Central  Google Scholar 

  • Marrakchi H, Laneelle M-A, Daffe M (2014) Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 21:67–85

    CAS  PubMed  Google Scholar 

  • Martins M, Pluvinage B, Li de la Sierra-Gallay I, Barbault F, Dairou J, Dupret J-M, Rodrigues-Lima F (2008) Functional and structural characterization of the arylamine N-acetyltransferase from the opportunistic pathogen Nocardia farcinica. J Mol Biol 383:549–560

    CAS  PubMed  Google Scholar 

  • McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE (2014) PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 24:409–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merino E, Barrientos A, Rodriguez J, Naharro G, Luengo JM, Olivera ER (2013) Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biotechnol 97:891–904

    CAS  PubMed  Google Scholar 

  • Monge A, Palop JA, Lopez de Cerain A, Senador V, Martinez-Crespo FJ, Sainz Y, Narro S, Garcia E, de Miguel C, Gonzalez M (1995) Hypoxia-selective agents derived from quinoxaline 1,4-di-N-oxides. J Med Chem 38:1786–1792

    CAS  PubMed  Google Scholar 

  • Munk AC, Lapidus A, Lucas S, Nolan M, Tice H, Cheng J-F, Del Rio TG, Goodwin L, Pitluck S, Liolios K, Huntemann M, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Tapia R, Han C, Land M, Hauser L, Chang Y-J, Jeffries CD, Brettin T, Yasawong M, Brambilla E-M, Rohde M, Sikorski J, Goker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk H-P (2011) Complete genome sequence of Tsukamurella paurometabola type strain (no. 33). Stand Genomic Sci 4:342–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murinova S, Dercova K (2014) Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 2014:873081

    PubMed  PubMed Central  Google Scholar 

  • Nam S-W, Chun J, Kim S, Kim W, Zakrzewska-Czerwinska J, Goodfellow M (2003) Tsukamurella spumae sp. nov., a novel actinomycete associated with foaming in activated sludge plants. Syst Appl Microbiol 26:367–375

    CAS  PubMed  Google Scholar 

  • Nam S-W, Kim W, Chun J, Goodfellow M (2004) Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol 54:1209–1212

    CAS  PubMed  Google Scholar 

  • Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2:2212–2221

    CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    CAS  PubMed  Google Scholar 

  • Olson JB, Harmody DK, Bej AK, McCarthy PJ (2007) Tsukamurella spongiae sp. nov., a novel actinomycete isolated from a deep-water marine sponge. Int J Syst Evol Microbiol 57:1478–1481

    CAS  PubMed  Google Scholar 

  • Ordaz-Guillen Y, Galindez-Mayer CJ, Ruiz-Ordaz N, Juarez-Ramirez C, Santoyo-Tepole F, Ramos-Monroy O (2014) Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ Sci Pollut Res Int 21:8765–8773

    CAS  PubMed  Google Scholar 

  • Pathom-Aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181–189

    CAS  PubMed  Google Scholar 

  • Payton M, Auty R, Delgoda R, Everett M, Sim E (1999) Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol 181:1343–1347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Payton M, Mushtaq A, Yu TW, Wu LJ, Sinclair J, Sim E (2001) Eubacterial arylamine N-acetyltransferases—identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues. Microbiology 147:1137–1147

    CAS  PubMed  Google Scholar 

  • Pereira L, Mondal PK, Alves M (2015) Aromatic amines sources, environmental impact and remediation. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Pollutants in buildings, water and living organisms. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-19276-5_7

    Chapter  Google Scholar 

  • Pluvinage B, Dairou J, Possot OM, Martins M, Fouet A, Dupret J-M, Rodrigues-Lima F (2007) Cloning and molecular characterization of three arylamine N-acetyltransferase genes from Bacillus anthracis: identification of unusual enzymatic properties and their contribution to sulfamethoxazole resistance. Biochemistry 46:7069–7078

    CAS  PubMed  Google Scholar 

  • Pluvinage B, Li de la Sierra-Gallay I, Kubiak X, Xu X, Dairou J, Dupret J-M, Rodrigues-Lima F (2011) The Bacillus anthracis arylamine N-acetyltransferase ((BACAN)NAT1) that inactivates sulfamethoxazole, reveals unusual structural features compared with the other NAT isoenzymes. FEBS Lett 585:3947–3952

    CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M (2019) Local applications but global implications: can pesticides drive microorganisms to develop antimicrobial resistance? Sci Total Environ 654:177–189

    CAS  PubMed  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues-Lima F, Dairou J, Diaz CL, Rubio MC, Sim E, Spaink HP, Dupret J-M (2006) Cloning, functional expression and characterization of Mesorhizobium loti arylamine N-acetyltransferases: rhizobial symbiosis supplies leguminous plants with the xenobiotic N-acetylation pathway. Mol Microbiol 60:505–512

    CAS  PubMed  Google Scholar 

  • Rothman N, Garcia-Closas M, Hein DW (2007) Commentary: Reflections on G.M. Lower and colleagues’ 1979 study associating slow acetylator phenotype with urinary bladder cancer: meta-analysis, historical refinements of the hypothesis, and lessons learned. Int J Epidemiol 36:23–28

    PubMed  Google Scholar 

  • Safaei S, Fatahi-Bafghi M, Pouresmaeil O (2018) Role of Tsukamurella species in human infections: first literature review. New Microbes New Infect. 22:6–12

    CAS  PubMed  Google Scholar 

  • Saito K, Shinohara A, Kamataki T, Kato R (1985) Metabolic activation of mutagenic N-hydroxyarylamines by O-acetyltransferase in Salmonella typhimurium TA98. Arch Biochem Biophys 239:286–295

    CAS  PubMed  Google Scholar 

  • Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble MEM, Sim E (2005) Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines. Biochem J 390:115–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandy J, Mushtaq A, Kawamura A, Sinclair J, Sim E, Noble M (2002) The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis—an enzyme which inactivates the anti-tubercular drug, isoniazid. J Mol Biol 318:1071–1083

    CAS  PubMed  Google Scholar 

  • Sim E, Fakis G, Laurieri N, Boukouvala S (2012) Arylamine N-acetyltransferases—from drug metabolism and pharmacogenetics to identification of novel targets for pharmacological intervention. Adv Pharmacol. https://doi.org/10.1016/B978-0-12-398339-8.00005-7

    Article  PubMed  Google Scholar 

  • Sinclair JC, Sandy J, Delgoda R, Sim E, Noble ME (2000) Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol 7:560–564

    CAS  PubMed  Google Scholar 

  • Soler A, Garcia-Hernandez J, Zornoza A, Alonso JL (2018) Diversity of culturable nocardioform actinomycetes from wastewater treatment plants in Spain and their role in the biodegradability of aromatic compounds. Environ Technol 39:172–181

    CAS  PubMed  Google Scholar 

  • Steinhaus EA (1941) A study of the bacteria associated with thirty species of insects. J Bacteriol 42:757–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stratmann A, Toupet C, Schilling W, Traber R, Oberer L, Schupp T (1999) Intermediates of rifamycin polyketide synthase produced by an Amycolatopsis mediterranei mutant with inactivated rifF gene. Microbiology 145(Pt 1):3365–3375

    CAS  PubMed  Google Scholar 

  • Suzuki H, Ohnishi Y, Horinouchi S (2007) Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus. J Bacteriol 189:2155–2159

    CAS  PubMed  Google Scholar 

  • Taboada B, Estrada K, Ciria R, Merino E (2018) Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34:4118–4120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taboada B, Verde C, Merino E (2010) High accuracy operon prediction method based on STRING database scores. Nucleic Acids Res 38:e130

    PubMed  PubMed Central  Google Scholar 

  • Takenaka S, Cheng M, Mulyono Koshiya A, Murakami S, Aoki K (2009) Gene cloning and characterization of arylamine N-acetyltransferase from Bacillus cereus strain 10-L-2. J. Biosci Bioeng 107:27–32

    CAS  PubMed  Google Scholar 

  • Tang Y, Teng JLL, Cheung CLW, Ngan AHY, Huang Y, Wong SSY, Yip EKT, Ng KHL, Que T-L, Lau SKP, Woo PCY (2016) Tsukamurella serpentis sp. nov., isolated from the oral cavity of Chinese cobras (Naja atra). Int J Syst Evol Microbiol 66:3329–3336

    CAS  PubMed  Google Scholar 

  • Travkin V, Baskunov BP, Golovlev EL, Boersma MG, Boeren S, Vervoort J, van Berkel WJH, Rietjens IMCM, Golovleva LA (2002) Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol Lett 209:307–312

    CAS  PubMed  Google Scholar 

  • Tsirka T, Boukouvala S, Agianian B, Fakis G (2014) Polymorphism p.Val231Ile alters substrate selectivity of drug-metabolizing arylamine N-acetyltransferase 2 (NAT2) isoenzyme of rhesus macaque and human. Gene 536:65–73

    CAS  PubMed  Google Scholar 

  • Tsirka T, Konstantopoulou M, Sabbagh A, Crouau-Roy B, Ryan A, Sim E, Boukouvala S, Fakis G (2018) Comparative analysis of xenobiotic metabolising N-acetyltransferases from ten non-human primates as in vitro models of human homologues. Sci Rep 8:9759

    PubMed  PubMed Central  Google Scholar 

  • Tsukamura M, Kawakami K (1982) Lung infection caused by Gordona aurantiaca (Rhodococcus aurantiacus). J Clin Microbiol 16:604–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vagena E, Fakis G, Boukouvala S (2008) Arylamine N-acetyltransferases in prokaryotic and eukaryotic genomes: a survey of public databases. Curr Drug Metab 9:628–660

    CAS  PubMed  Google Scholar 

  • Van Bogaert INA, Groeneboer S, Saerens K, Soetaert W (2011) The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 278:206–221

    PubMed  Google Scholar 

  • Van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 104:1947–1952

    PubMed  PubMed Central  Google Scholar 

  • Wan N, Tian J, Wang H, Tian M, He Q, Ma R, Cui B, Han W, Chen Y (2018) Identification and characterization of a highly S-enantioselective halohydrin dehalogenase from Tsukamurella sp. 1534 for kinetic resolution of halohydrins. Bioorg Chem 81:529–535

    CAS  PubMed  Google Scholar 

  • Wang X, Yang S, Gu J, Deng J (2016) Mycobacterium tuberculosis arylamine N-acetyltransferase acetylates and thus inactivates para-aminosalicylic acid. Antimicrob Agents Chemother 60(12):7505–7508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe M, Sofuni T, Nohmi T (1992) Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and high. J Biol Chem 267:8429–8436

    CAS  PubMed  Google Scholar 

  • Weber WW, Hein DW (1985) N-acetylation pharmacogenetics. Pharmacol Rev 37:25–79

    CAS  PubMed  Google Scholar 

  • Weon H-Y, Yoo S-H, Anandham R, Schumann P, Kroppenstedt RM, Kwon S-W, Stackebrandt E (2010) Tsukamurella soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60:1667–1671

    CAS  PubMed  Google Scholar 

  • Westwood IM, Holton SJ, Rodrigues-Lima F, Dupret J-M, Bhakta S, Noble MEM, Sim E (2005) Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine N-acetyltransferase. Biochem J 385:605–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082

    CAS  PubMed  Google Scholar 

  • Wu H, Dombrovsky L, Tempel W, Martin F, Loppnau P, Goodfellow GH, Grant DM, Plotnikov AN (2007) Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases. J Biol Chem 282:30189–30197

    CAS  PubMed  Google Scholar 

  • Wu K, Wang H, Sun H, Wei D (2015) Efficient kinetic resolution of phenyl glycidyl ether by a novel epoxide hydrolase from Tsukamurella paurometabola. Appl Microbiol Biotechnol 99:9511–9521

    CAS  PubMed  Google Scholar 

  • Xu X, Li de la Sierra-Gallay I, Kubiak X, Duval R, Chaffotte AF, Dupret JM, Haouz A, Rodrigues-Lima F (2015) Insight into cofactor recognition in arylamine N-acetyltransferase enzymes: structure of Mesorhizobium loti arylamine N-acetyltransferase in complex with coenzyme A. Acta Crystallogr D 71:266–273

    CAS  PubMed  Google Scholar 

  • Yao X-F, Khan F, Pandey R, Pandey J, Mourant RG, Jain RK, Guo J-H, Russell RJ, Oakeshott JG, Pandey G (2011) Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21. Microbiology 157:721–726

    CAS  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134

    CAS  Google Scholar 

  • Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zang Y, Zhao S, Doll MA, States JC, Hein DW (2007) Functional characterization of the A411T (L137F) and G364A (D122N) genetic polymorphisms in human N-acetyltransferase 2. Pharmacogenet Genomics 17:37–45

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was partly funded by a Joint Research & Technology 2009 Programme between Greece and Hungary (Grant No. HUN40), co-financed by Greece, Hungary and the European Union (European Regional Development Fund-ERDF) through Operational Program “Competitiveness and Entrepreneurship” in the context of project “Bilateral, Multilateral and Regional R&T Cooperation” implemented by the Greek General Secretariat for Research and Technology (GSRT) and the Hungarian National Office for Research and Technology (NKTH), and conducted by the two partners in 2012–2014. E.K. is recipient of a Ph.D. scholarship (2016–2019) and her research is co-financed by Greece and the European Union (European Social Fund-ESF) through Operational Program “Human Resources Development, Education and Lifelong Learning” in the context of project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ). None of the funding bodies had any involvement in the study design, in the collection, analysis or interpretation of data, in the writing of the report or the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

VG performed the bulk of experimental procedures and data analyses; EK contributed to xenobiotic sensitivity tests and TLC assays; CI contributed to enzyme kinetic assays; OS, CVP and MGP contributed to DSF assays; IO and DP contributed to computational work; KF synthesized and characterised chemical compounds; TF, KM, GF and SB generated the biological material used and provided expert scientific input; KM, GF and SB conceived of, designed and pursued funding for the study; SB supervised the project, analysed data and wrote the manuscript. The materials and datasets generated during the study are available from SB on reasonable request. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sotiria Boukouvala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 10425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garefalaki, V., Kontomina, E., Ioannidis, C. et al. The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol 35, 174 (2019). https://doi.org/10.1007/s11274-019-2755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2755-1

Keywords

Navigation