Advertisement

Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli

  • Zhao Aiguo
  • Zhai MeizhiEmail author
Original Paper
  • 65 Downloads

Abstract

The important metabolic intermediate 5-aminolevulinic acid (ALA) is useful for cancer treatment or plant growth regulation and has consequently received much attention. In this study, we introduced the HemA1 and pgr7 genes from the higher plant Arabidopsis thaliana into recombinant Escherichia coli to overproduce extracellular 5-aminolevulinic acid via the C5 pathway. In the E. coli BL21 (DE3) strain background, the ALA concentration of the strain expressing both HemA1 and pgr7 was the highest and reached 3080.62 mg/L. Among the 7 tested hosts, ALA production was the highest in E. coli Transetta (DE3). In E. coli Transetta GTR/GBP, the expression levels of zwf, gnd, pgl and RhtA were upregulated. Glutamate induced the expression of the GltJ, GltK, GltL and GltS genes that are in involved in glutamate uptake. The recombinant E. coli Transetta GTR/GBP was able to produce 7642 mg/L ALA in modified minimal medium supplemented with 10 g/L glutamate and 15 g/L glucose after 48 h of fermentation at 22 °C. The results provide persuading evidence for the efficient production of ALA from glucose and glutamate in E. coli expressing A. thaliana HemA1 and pgr7. Further optimization of the fermentation process should be done to improve the ALA production to an industrially relevant level.

Keywords

5-Aminolevulinic acid Arabidopsis thaliana Escherichia coli Glutamyl-tRNAGlu reductase 

Notes

Acknowledgements

This work was financially supported by a grant from the National Natural Science Foundation of China (31500243), and a grant of the national basic research program of China (Z109021566).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11274_2019_2750_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 25 KB)

References

  1. Caspi R, Altman T, Billington R et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–D471.  https://doi.org/10.1093/nar/gkt1103 CrossRefPubMedGoogle Scholar
  2. Choi HP, Lee YM, Yun CW, Sung HC (2008) Extracellular 5-aminolevulinic acid production by Escherichia coli containing the Rhodopseudomonas palustris KUGB306 hemA gene. J Microbiol Biotechnol 18:1136–1140PubMedGoogle Scholar
  3. Czarnecki O, Hedtke B, Melzer M et al (2011) An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts. Plant Cell 23:4476–4491.  https://doi.org/10.1105/tpc.111.086421 CrossRefPubMedPubMedCentralGoogle Scholar
  4. de Souza AL, Marra K, Gunn J et al (2016) Comparing desferrioxamine and light fractionation enhancement of ALA-PpIX photodynamic therapy in skin cancer. Br J Cancer 115:805–813.  https://doi.org/10.1038/bjc.2016.267 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Edwards SR, Shanley BC, Reynoldson JA (1984) Neuropharmacology of delta-aminolaevulinic acid-I. Effect of acute administration in rodents. Neuropharmacology 23:477–481CrossRefGoogle Scholar
  6. Fu WQ, Lin JP, Cen PL (2007) 5-aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl Microbiol Biotechnol 75:777–782CrossRefGoogle Scholar
  7. Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii. FEBS Lett 314:77–80CrossRefGoogle Scholar
  8. Jung H, Pirch T, Hilger D (2006) Secondary transport of amino acids in prokaryotes. J Membr Biol 213:119–133.  https://doi.org/10.1007/s00232-006-0880-x CrossRefPubMedGoogle Scholar
  9. Jung HS, Okegawa Y, Shih PM et al (2010) Arabidopsis thaliana PGR7 encodes a conserved chloroplast protein that is necessary for efficient photosynthetic electron transport. PLoS ONE 5:e11688.  https://doi.org/10.1371/journal.pone.0011688 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Kahane S, Marcus M, Metzer E, Halpern YS (1976) Effect of growth conditions on glutamate transport in the wild-type strain and glutamate-utilizing mutants of Escherichia coli. J Bacteriol 125:762–769PubMedPubMedCentralGoogle Scholar
  11. Kang Z, Wang Y, Gu P, Wang Q, Qi Q (2011) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13:492–498.  https://doi.org/10.1016/j.ymben.2011.05.003 CrossRefPubMedGoogle Scholar
  12. Li JM, Brathwaite O, Cosloy SD, Russell CS (1989) 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol 171:2547–2552CrossRefGoogle Scholar
  13. Li T, Guo YY, Qiao GQ, Chen GQ (2016) Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol 5:1264–1274.  https://doi.org/10.1021/acssynbio.6b00105 CrossRefPubMedGoogle Scholar
  14. Liu XX, Wang L, Wang YJ, Cai LL (2010) D-glucose enhanced 5-aminolevulinic acid production in recombinant Escherichia coli culture. Appl Biochem Biotechnol 160:822–830.  https://doi.org/10.1007/s12010-009-8608-x CrossRefPubMedGoogle Scholar
  15. Liu S, Zhang G, Li X, Zhang J (2014) Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 98:7349–7357.  https://doi.org/10.1007/s00253-014-5925-y CrossRefPubMedGoogle Scholar
  16. Mauzerall D, Granick S (1956) The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446PubMedGoogle Scholar
  17. McNicholas PM, Javor G, Darie S, Gunsalus RP (1997) Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM, and hemA of Escherichia coli. FEMS Microbiol Lett 146:143–148CrossRefGoogle Scholar
  18. Meng Q, Zhang Y, Ju X et al (2016) Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. J Biotechnol 226:8–13.  https://doi.org/10.1016/j.jbiotec.2016.03.024 CrossRefPubMedGoogle Scholar
  19. Mikolajewska P, Donnelly RF, Garland MJ et al (2010) Microneedle pre-treatment of human skin improves 5-aminolevulininc acid (ALA)- and 5-aminolevulinic acid methyl ester (MAL)-induced PpIX production for topical photodynamic therapy without increase in pain or erythema. Pharm Res 27:2213–2220.  https://doi.org/10.1007/s11095-010-0227-2 CrossRefPubMedGoogle Scholar
  20. Mills-Davies N, Butler D, Norton E et al (2017) Structural studies of substrate and product complexes of 5-aminolaevulinic acid dehydratase from humans, Escherichia coli and the hyperthermophile Pyrobaculum calidifontis. Acta Crystallogr D 73:9–21.  https://doi.org/10.1107/S2059798316019525 CrossRefGoogle Scholar
  21. Mohammadpour H, Fekrazad R (2016) Antitumor effect of combined Dkk-3 and 5-ALA mediated photodynamic therapy in breast cancer cell’s colony. Photodiagn Photodyn Ther 14:200–203.  https://doi.org/10.1016/j.pdpdt.2016.04.001 CrossRefGoogle Scholar
  22. Neidle EL, Kaplan S (1993) Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 175:2292–2303CrossRefGoogle Scholar
  23. Noparatnaraporn N, Watanabe M, Sasaki K (2000) Extracellular formation of 5-aminolevulinic acid by intact cells of the marine photosynthetic bacterium Rhodovulum sp. under various pH conditions. World J Microbiol Biotechnol 16:313–315.  https://doi.org/10.1023/A:1008968111719 CrossRefGoogle Scholar
  24. Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO (2015) 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microbial Technol 81:1–7.  https://doi.org/10.1016/j.enzmictec.2015.07.004 CrossRefGoogle Scholar
  25. Reynolds TS, Courtney CM, Erickson KE, Wolfe LM, Chatterjee A, Nagpal P, Gill RT (2017) ROS mediated selection for increased NADPH availability in Escherichia coli. Biotechnol Bioeng 114:2685–2689.  https://doi.org/10.1002/bit.26385 CrossRefPubMedGoogle Scholar
  26. Saikeur A, Choorit W, Prasertsan P, Kantachote D, Sasaki K (2009) Influence of precursors and inhibitor on the production of extracellular 5-aminolevulinic acid and biomass by Rhodopseudomonas palustris KG31. Biosci Biotechnol Biochem 73:987–992.  https://doi.org/10.1271/bbb.80682 CrossRefPubMedGoogle Scholar
  27. Sasaki K, Watanabe M, Tanaka T, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29CrossRefGoogle Scholar
  28. Sasikala C, Ramana CV (1995) Biotechnological potentials of anoxygenic phototrophic bacteria. II. Biopolyesters, biopesticide, biofuel, and biofertilizer. Adv Appl Microbiol 41:227–278CrossRefGoogle Scholar
  29. Schauer S, Chaturvedi S, Randau L et al (2002) Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 277:48657–48663.  https://doi.org/10.1074/jbc.M206924200 CrossRefPubMedGoogle Scholar
  30. Schon A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Soll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284.  https://doi.org/10.1038/322281a0 CrossRefPubMedGoogle Scholar
  31. Scopelliti AJ, Font J, Vandenberg RJ, Boudker O, Ryan RM (2018) Structural characterisation reveals insights into substrate recognition by the glutamine transporter ASCT2/SLC1A5. Nat Commun 9:38.  https://doi.org/10.1038/s41467-017-02444-w CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sundara Sekar B, Seol E, Park S (2017) Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd). Biotechnol Biofuels 10:85.  https://doi.org/10.1186/s13068-017-0768-2 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Szvetnik A, Gal J, Kalman M (2007) Membrane topology of the GltS Na+/glutamate permease of Escherichia coli. FEMS Microbiol Lett 275:71–79.  https://doi.org/10.1111/j.1574-6968.2007.00863.x CrossRefPubMedGoogle Scholar
  34. Vothknecht UC, Kannangara CG, von Wettstein D (1996) Expression of catalytically active barley glutamyl tRNA(Glu) reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc Natl Acad Sci USA 93:9287–9291CrossRefGoogle Scholar
  35. Warnick GR, Burnham BF (1971) Regulation of prophyrin biosynthesis. Purification and characterization of -aminolevulinic acid synthase. J Biol Chem 246:6880–6885PubMedGoogle Scholar
  36. Willis RC, Furlong CE (1975) Interactions of a glutamate-aspartate binding protein with the glutamate transport system of Escherichia coli. J Biol Chem 250:2581–2586PubMedGoogle Scholar
  37. Xie L, Eiteman MA, Altman E (2003) Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Biotechnol Lett 25:1751–1755CrossRefGoogle Scholar
  38. Zhang X, Zhang J, Xu J, Zhao Q, Wang Q, Qi Q (2017) Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid. J Ind Microbiol Biotechnol.  https://doi.org/10.1007/s10295-017-1990-4 CrossRefPubMedGoogle Scholar
  39. Zhao A, Fang Y, Chen X et al (2014) Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein. Proc Natl Acad Sci USA 111:6630–6635.  https://doi.org/10.1073/pnas.1400166111 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of ForestryNorthwest A&F UniversityYanglingChina

Personalised recommendations