Advertisement

Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants?

  • Mutale-joan Chanda
  • Nawal Merghoub
  • Hicham EL ArroussiEmail author
Review

Abstract

Plant biostimulants are defined as materials containing microorganisms or substances whose function when applied to plants or the rhizosphere is to stimulate natural mechanisms to enhance plant growth, nutrient use efficiency, tolerance to abiotic stressors and crop quality, independent of their nutrient content. In agriculture, seaweeds (Macroalgae) have been used in the production of plant biostimulants while microalgae still remain unexploited. Microalgae are single cell microscopic organisms (prokaryotic or eukaryotic) that grow in a range of aquatic habitats, including, wastewaters, pounds, lakes, rivers, oceans, and even humid soils. These photosynthetic microorganisms are widely described as renewable sources of biofuels, bioingredients and biologically active compounds, such as polyunsaturated fatty acids (PUFAs), carotenoids, phycobiliproteins, sterols, vitamins and polysaccharides, which attract considerable interest in both scientific and industrial communities. Microalgae polysaccharides have so far proved to have several important biological activities, making them biomaterials and bioactive products of increasing importance for a wide range of applications. The present review describes microalgae polysaccharides, their biological activities and their possible application in agriculture as a potential sustainable alternative for enhanced crop performance, nutrient uptake and resilience to environmental stress. This review does not only present a comprehensive and systematic study of Microalgae polysaccharides as plant biostimulants but considers the fundamental and innovative principles underlying this technology.

Keywords

Microalgae Polysaccharides Agriculture Bio stimulants 

Notes

References

  1. Almomani F, Al Ketife A, Judd S et al (2019) Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci Total Environ 662:662–671.  https://doi.org/10.1016/J.SCITOTENV.2019.01.144 CrossRefPubMedGoogle Scholar
  2. Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21(3):358–364.  https://doi.org/10.1016/j.copbio.2010.02.008 CrossRefPubMedGoogle Scholar
  3. Arad S, Atar D (2015) Ben Gurion University of Negev Research and Development Authority Ltd, Viscosupplementation with algal polysaccharides in the treatment of arthritis. U.S. Patent 9,119,870Google Scholar
  4. EL Arroussi HE, Benhima R, Elbaouchi A et al (2018) Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J Appl Phycol 30:2929–2941.  https://doi.org/10.1007/s10811-017-1382-1 CrossRefGoogle Scholar
  5. Barone V, Baglieri A, Stevanato P et al (2018) Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J Appl Phycol 30:1061–1071.  https://doi.org/10.1007/s10811-017-1283-3 CrossRefGoogle Scholar
  6. Barone V, Puglisi I, Fragalà F et al (2019) Novel bioprocess for the cultivation of microalgae in hydroponic growing system of tomato plants. J Appl Phycol 31:465–470.  https://doi.org/10.1007/s10811-018-1518-y CrossRefGoogle Scholar
  7. Basak A (2008) Biostimulators_definitions, classifications and legislation. In: Helena G (ed) Biostimulants in morden agriculture, general aspects. Warsaw, p 7–17Google Scholar
  8. Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic (Amsterdam) 196:39–48.  https://doi.org/10.1016/J.SCIENTA.2015.09.012 CrossRefGoogle Scholar
  9. Bhagea R, Bhoyroo V, Puchooa D (2019) Microalgae: the next best alternative to fossil fuels after biomass. A review. Microbiol Res (Pavia).  https://doi.org/10.4081/mr.2019.7936 CrossRefGoogle Scholar
  10. Borowitzka MA (2016) Chemically-mediated interactions in microalgae. In: The physiology of microalgae. Springer, Cham, pp 321–357CrossRefGoogle Scholar
  11. Bulgari R, Cocetta G, Trivellini A et al (2015) Biostimulants and crop responses: a review. Biol. Agric, Hortic, p 31Google Scholar
  12. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41.  https://doi.org/10.1007/s11104-014-2131-8 CrossRefGoogle Scholar
  13. Castro J, Vera J, González A, Moenne A (2012) Oligo-carrageenans stimulate growth by enhancing photosynthesis, basal metabolism, and cell cycle in tobacco plants (var. Burley). J Plant Growth Regul 31:173–185.  https://doi.org/10.1007/s00344-011-9229-5 CrossRefGoogle Scholar
  14. Challouf R, Trabelsi L, Dhieb RB, El Abed O et al (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838.  https://doi.org/10.1590/S1516-89132011000400024 CrossRefGoogle Scholar
  15. Chiaiese P, Corrado G, Colla G et al (2018) Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci 9:1782.  https://doi.org/10.3389/fpls.2018.01782 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Colla G, Cardarelli M, Bonini P, Rouphael Y (2017) Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 52:1214–1220.  https://doi.org/10.21273/HORTSCI12200-17 CrossRefGoogle Scholar
  17. Conan C, Guiboileau A, Joubert J-M, Potin P (2015) Investigations of seaweed filtrate as biostimulant. In: Perata P, Brown P, Alvarez RA, Ponchet M (eds) Abstracts book for oral and poster presentations of the 2nd World Congress on the use of biostimulants in agriculture. New Ag International, Florence, p 75Google Scholar
  18. Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL et al (2015) Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 8:190–209.  https://doi.org/10.1111/1751-7915.12167 CrossRefPubMedGoogle Scholar
  19. de Jesus Raposo MF, de Morais AM, de Morais RM (2014) Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci 101:56–63.  https://doi.org/10.1016/J.LFS.2014.02.013 CrossRefGoogle Scholar
  20. de Jesus Raposo MF, de Morais AMMB, de Morais RMSC (2015) Bioactivity and applications of polysaccharides from marine Microalgae. polysaccharides. Springer, Cham, pp 1683–1727CrossRefGoogle Scholar
  21. de Morais MG, Vaz Bda S, de Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:1–15.  https://doi.org/10.1155/2015/835761 CrossRefGoogle Scholar
  22. Di Stasio E, Van Oosten MJ, Silletti S et al (2018) Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J Appl Phycol 30:2675–2686.  https://doi.org/10.1007/s10811-018-1439-9 CrossRefGoogle Scholar
  23. du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic (Amsterdam) 196:3–14.  https://doi.org/10.1016/J.SCIENTA.2015.09.021 CrossRefGoogle Scholar
  24. El Arroussi H, Mernissi N, Benhimaa R et al (2016) Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Util 7:55–63Google Scholar
  25. Ertani A, Pizzeghello D, Francioso O et al (2014) Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Front Plant Sci 5:375.  https://doi.org/10.3389/fpls.2014.00375 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Faheed FA, Fattah ZA (2008) Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. J Agric Soc SciGoogle Scholar
  27. Farid R, Mutale-joan C, Redouane B et al (2019) Effect of microalgae polysaccharides on biochemical and metabolomics pathways related to plant defense in Solanum lycopersicum. Appl Biochem Biotechnol 188:225–240.  https://doi.org/10.1007/s12010-018-2916-y CrossRefPubMedGoogle Scholar
  28. Fesel PH, Zuccaro A (2016) β-glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 90:53–60.  https://doi.org/10.1016/j.fgb.2015.12.004 CrossRefPubMedGoogle Scholar
  29. Fujita M, Fujita Y, Noutoshi Y et al (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442.  https://doi.org/10.1016/J.PBI.2006.05.014 CrossRefPubMedGoogle Scholar
  30. Garcia-Gonzalez J, Sommerfeld M (2016) Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. J Appl Phycol 28:1051–1061.  https://doi.org/10.1007/s10811-015-0625-2 CrossRefPubMedGoogle Scholar
  31. Geresh S, Arad S (1991) The extracellular polysaccharides of the red microalgae: chemistry and rheology. Bioresour Technol 38:195–201.  https://doi.org/10.1016/0960-8524(91)90154-C CrossRefGoogle Scholar
  32. Ghannam A, Abbas A, Alek H et al (2013) Enhancement of local plant immunity against tobacco mosaic virus infection after treatment with sulphated-carrageenan from red alga (Hypnea musciformis). Physiol Mol Plant Pathol 84:19–27.  https://doi.org/10.1016/J.PMPP.2013.07.001 CrossRefGoogle Scholar
  33. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930.  https://doi.org/10.1016/J.PLAPHY.2010.08.016 CrossRefGoogle Scholar
  34. Goñi O, Fort A, Quille P, Mckeown PC et al (2016) Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. J Agr Food Chem 64:2980–2989.  https://doi.org/10.1021/acs.jafc.6b00621 CrossRefGoogle Scholar
  35. González A, Castro J, Vera J, Moenne A (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul 32:443–448.  https://doi.org/10.1007/s00344-012-9309-1 CrossRefGoogle Scholar
  36. Gupta P, Ravi I, Sharma V (2013) Induction of β -1, 3-glucanase and chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola. J plant Interact 8(2):155–161.  https://doi.org/10.1080/17429145.2012.679705 CrossRefGoogle Scholar
  37. Guzmán S, Gato A, Lamela M et al (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phyther Res 17:665–670.  https://doi.org/10.1002/ptr.1227 CrossRefGoogle Scholar
  38. Guzman-Murillo MA, Ascencio F (2000) Anti-adhesive activity of sulphated exopolysaccharides of microalgae on attachment of red sore disease-associated bacteria and Helicobacter pylori to tissue culture cells. Lett Appl Microbiol 30:473–478.  https://doi.org/10.1046/j.1472-765x.2000.00751.x CrossRefPubMedGoogle Scholar
  39. Hayashi T, Hayashi K, Maeda M, Kojima I (1996) Calcium spirulan, an inhibitor of enveloped virus replication, from a Blue-Green Alga Spirulina platensis. J Nat Prod 59:83–87.  https://doi.org/10.1021/np960017o CrossRefPubMedGoogle Scholar
  40. Huang J, Chen B, You W (2001) Studies on separation of extracellular polysaccharide from Porphyridium cruentum and its anti-HBV activity in vitro. Chin J Mar Drugs 05Google Scholar
  41. Jiang Y-P, Cheng F, Zhou Y-H et al (2012) Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol 194:932–943.  https://doi.org/10.1111/j.1469-8137.2012.04111.x CrossRefPubMedGoogle Scholar
  42. Jung-Bum L, Hayashi T, Hayashi K, Sankawa U (2000) Structural analysis of calcium spirulan (Ca− SP)- derived oligosaccharides using electrospray ionization mass spectrometry. J Nat Prod 63(1):136–138CrossRefGoogle Scholar
  43. Kaji T, Okabe M, Shimada S, Yamamoto C, Fujiwara Y, Lee JB, Hayashi T (2004) Sodium spirulan as a potent inhibitor of arterial smooth muscle cell proliferation in vitro. Life Sci 74:1–9CrossRefGoogle Scholar
  44. Kaplan D, Christiaen D, Arad SM (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53:2953–2956PubMedPubMedCentralGoogle Scholar
  45. Kemmerling B, Halter T, Mazzotta S et al (2011) A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. Front Plant Sci 2:88.  https://doi.org/10.3389/fpls.2011.00088 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Khan W, Hiltz D, Critchley AT, Prithiviraj B (2011) Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. J Appl Phycol 23:409–414.  https://doi.org/10.1007/s10811-010-9583-x CrossRefGoogle Scholar
  47. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36.  https://doi.org/10.1186/s12934-018-0879-x CrossRefPubMedPubMedCentralGoogle Scholar
  48. Klarzynski O, Descamps V, Plesse B et al (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microb Interact 16:115–122.  https://doi.org/10.1094/MPMI.2003.16.2.115 CrossRefGoogle Scholar
  49. Matsui MS, Muizzuddin N, Arad S, Marenus K (2003) Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104(1):13–22.  https://doi.org/10.1385/ABAB:104:1:13 CrossRefPubMedGoogle Scholar
  50. Mercier L, Lafitte C, Borderies G et al (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol 149:43–51.  https://doi.org/10.1046/j.1469-8137.2001.00011.x CrossRefGoogle Scholar
  51. Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng. Life Sci. 15(2):160–176CrossRefGoogle Scholar
  52. Michalak I, Dmytryk A, Schroeder G et al (2017) The application of homogenate and filtrate from baltic seaweeds in seedling growth tests. Appl Sci 7:230.  https://doi.org/10.3390/app7030230 CrossRefGoogle Scholar
  53. Mishra A, Jha B (2013) Microbial exopolysaccharides. The prokaryotes. Springer, Berlin Heidelberg, pp 179–192CrossRefGoogle Scholar
  54. Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857.  https://doi.org/10.1016/J.CARBPOL.2010.08.067 CrossRefGoogle Scholar
  55. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498.  https://doi.org/10.1016/J.TPLANTS.2004.08.009 CrossRefGoogle Scholar
  56. Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front bioeng biotechnol.  https://doi.org/10.3389/fbioe.2019.00042 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nie C, Zhu P, Ma S et al (2018) Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce. Carbohydr Polym 188:236–242.  https://doi.org/10.1016/J.CARBPOL.2018.02.009 CrossRefPubMedGoogle Scholar
  58. Ogawa K, Yamaura M, Maruyama I (1997) Isolation and identification of 2-O-methyl-L-rhamnose and 3-O-methyl-L-rhamnose as constituents of an acidic polysaccharide of Chlorella vulgaris. Biosci Biotechnol Biochem 61:539–540CrossRefGoogle Scholar
  59. Ogawa K, Ikeda Y, Kondo S (1999) A new trisaccharide, α-d-glucopyranuronosyl-(1 → 3)-α-l-rhamnopyranosyl-(1 → 2)-α-l-rhamnopyranose from Chlorella vulgaris. Carbohydr Res 321:128–131.  https://doi.org/10.1016/S0008-6215(99)00176-7 CrossRefGoogle Scholar
  60. Petrozza A, Santaniello A, Summerer S et al (2014) Physiological responses to Megafol® treatments in tomato plants under drought stress: a phenomic and molecular approach. Sci Hortic (Amsterdam) 174:185–192.  https://doi.org/10.1016/J.SCIENTA.2014.05.023 CrossRefGoogle Scholar
  61. Pinzón AY, González-Delgado ÁD, Kafarov V (2014) Optimization of microalgae composition for development of a topology of biorefinery based on profitability analysis. Chem Eng Trans 37:457–462.  https://doi.org/10.3303/CET1437077 CrossRefGoogle Scholar
  62. Plaza BM, Gómez-Serrano C, Acién-Fernández FG, Jimenez-Becker S (2018) Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J Appl Phycol 30:2359–2365.  https://doi.org/10.1007/s10811-018-1427-0 CrossRefGoogle Scholar
  63. Ponce NMA, Pujol CA, Damonte EB et al (2003) Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr Res 338:153–165.  https://doi.org/10.1016/S0008-6215(02)00403-2 CrossRefPubMedGoogle Scholar
  64. Potters G, Horemans N, Bellone S, Caubergs RJ et al (2004) Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiol 134(4):1479–1487.  https://doi.org/10.1104/pp.103.033548 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Qi H, Zhao T, Zhang Q et al (2005) Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol 17:527–534.  https://doi.org/10.1007/s10811-005-9003-9 CrossRefGoogle Scholar
  66. Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475.  https://doi.org/10.3390/plants3040458 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Renuka N, Guldhe A, Prasanna R et al (2018) Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol Adv 36:1255–1273.  https://doi.org/10.1016/J.BIOTECHADV.2018.04.004 CrossRefPubMedGoogle Scholar
  68. Ronga D, Setti L, Salvarani C et al (2019) Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Sci Hortic (Amsterdam) 244:172–181.  https://doi.org/10.1016/J.SCIENTA.2018.09.037 CrossRefGoogle Scholar
  69. Rossi F, De Philippis R (2016) Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis. The physiology of microalgae. Springer, Cham, pp 565–590CrossRefGoogle Scholar
  70. Rouphael Y, Colla G (2018) Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front Plant Sci 9:1655.  https://doi.org/10.3389/fpls.2018.01655 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sangha JS, Ravichandran S, Prithiviraj K et al (2010) Sulfated macroalgal polysaccharides λ-carrageenan and ι-carrageenan differentially alter Arabidopsis thaliana resistance to Sclerotinia sclerotiorum. Physiol Mol Plant Pathol 75:38–45.  https://doi.org/10.1016/J.PMPP.2010.08.003 CrossRefGoogle Scholar
  72. Sarfaraz A, Naeem M, Shafia N et al (2011) An evaluation of the effects of irradiated sodium alginate on the growth, physiological activities and essential oil production of fennel (Foeniculum vulgare Mill.). J Med Plants Res 5(1):15–21Google Scholar
  73. Shaik R, Ramakrishna W (2014) Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. Plant Physiol 164:481–495.  https://doi.org/10.1104/pp.113.225862 CrossRefPubMedGoogle Scholar
  74. Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K et al (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57(2):71–5.  https://doi.org/10.1042/BA20100196 CrossRefPubMedGoogle Scholar
  75. Sharma SHS, Lyons G, McRoberts C et al (2012) Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J Appl Phycol 24:1081–1091.  https://doi.org/10.1007/s10811-011-9737-5 CrossRefGoogle Scholar
  76. Sharma HSS, Fleming C, Selby C et al (2014) Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26:465–490.  https://doi.org/10.1007/s10811-013-0101-9 CrossRefGoogle Scholar
  77. Shoshana A, Rapoport L, Moshkovich A, van Moppes D et al (2006) Superior biolubricant from a species of red microalga. Langmuir 22(17):7313–7317.  https://doi.org/10.1021/la060600x CrossRefGoogle Scholar
  78. Shukla PS, Borza T, Critchley AT, Prithiviraj B (2016) Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Front Mar Sci 3:81.  https://doi.org/10.3389/fmars.2016.00081 CrossRefGoogle Scholar
  79. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96.  https://doi.org/10.1263/JBB.101.87 CrossRefPubMedGoogle Scholar
  80. Stadnik MJ, de Freitas MB (2014) Algal polysaccharides as source of plant resistance inducers. Trop Plant Pathol 39:111–118.  https://doi.org/10.1590/S1982-56762014000200001 CrossRefGoogle Scholar
  81. Stirk WA, Bálint P, Tarkowská D et al (2013a) Hormone profiles in microalgae: gibberellins and brassinosteroids. Plant Physiol Biochem 70:348–353.  https://doi.org/10.1016/J.PLAPHY.2013.05.037 CrossRefPubMedGoogle Scholar
  82. Stirk WA, Ördög V, Novák O et al (2013b) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467.  https://doi.org/10.1111/jpy.12061 CrossRefPubMedGoogle Scholar
  83. Sun L, Wang C, Shi Q, Ma C (2009) Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int J Biol Macromol 45:42–47.  https://doi.org/10.1016/j.ijbiomac.2009.03.013 CrossRefPubMedGoogle Scholar
  84. Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym 87(2):1206–1210.  https://doi.org/10.1016/j.carbpol.2011.08.097 CrossRefGoogle Scholar
  85. Talyshinsky MM, Souprun YY, Huleihel MM (2002) Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int 2(1):8CrossRefGoogle Scholar
  86. Tate JJ, Gutierrez-Wing MT, Rusch KA, Benton MG (2013) The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae chlorella sp.: a review. J Plant Growth Regul 32:417–428.  https://doi.org/10.1007/s00344-012-9302-8 CrossRefGoogle Scholar
  87. Tibbetts SM, Milley JE, Lall SP (2015) Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27:1109–1119.  https://doi.org/10.1007/s10811-014-0428-x CrossRefGoogle Scholar
  88. Vera J, Castro J, Gonzalez A, Moenne A (2011) Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar drugs 9(12):2514–2525.  https://doi.org/10.3390/md9122514 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Vera J, Castro J, Contreras RA et al (2012) Oligo-carrageenans induce a long-term and broad-range protection against pathogens in tobacco plants (var. Xanthi). Physiol Mol Plant Pathol 79:31–39.  https://doi.org/10.1016/J.PMPP.2012.03.005 CrossRefGoogle Scholar
  90. Villarruel-López A, Ascencio F, Nuño K (2017) Microalgae, a potential natural functional food source–a review. Pol J Food Nutr Sci 67(4):251–264.  https://doi.org/10.1515/pjfns-2017-0017 CrossRefGoogle Scholar
  91. Wilson HT, Xu K, Taylor AG (2015) Transcriptome analysis of gelatin seed treatment as a biostimulant of cucumber plant growth. Sci World J 2015:1–14.  https://doi.org/10.1155/2015/391234 CrossRefGoogle Scholar
  92. Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049.  https://doi.org/10.3389/fpls.2016.02049 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yim JH, Kim SJ, Ahn SH, Lee HK (2007) Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03. Bioresour Technol 98:361–367.  https://doi.org/10.1016/J.BIORTECH.2005.12.021 CrossRefPubMedGoogle Scholar
  94. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092.  https://doi.org/10.3389/fpls.2015.01092 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zha S, Zhao Q, Zhao B et al (2016) Molecular weight controllable degradation of Laminaria japonica polysaccharides and its antioxidant properties. J Ocean Univ China 15:637–642.  https://doi.org/10.1007/s11802-016-2943-7 CrossRefGoogle Scholar
  96. Zou P, Lu X, Zhao H et al (2019) Polysaccharides derived from the brown algae lessonia nigrescens enhance salt stress tolerance to wheat seedlings by enhancing the antioxidant system and modulating intracellular ion concentration. Front Plant Sci 10:48.  https://doi.org/10.3389/fpls.2019.00048 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mutale-joan Chanda
    • 1
    • 2
  • Nawal Merghoub
    • 1
  • Hicham EL Arroussi
    • 1
    Email author
  1. 1.Green Biotechnology Laboratory, Moroccan Foundation for Advanced Science, Innovation &Research (MASCIR). Rabat Design Center Rue Mohamed Al Jazouli, Madinat Al IrfaneRabatMorocco
  2. 2.Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment. Faculty of SciencesMohammed V University of RabatRabatMorocco

Personalised recommendations