Pseudomonas sp. UW4 acdS gene promotes primordium initiation and fruiting body development of Agaricus bisporus

  • Chaohui Zhang
  • Guang Zhang
  • Yamei Wen
  • Tao Li
  • Yuqian Gao
  • Fanmei Meng
  • Liyou QiuEmail author
  • Yuncan AiEmail author
Original Paper


To simplify industrial mushroom cultivation, we introduced a bacterial Pseudomonas sp. UW4 acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (AcdS), into fungus Agaricus bisporus. Transformant A. bisporus-acdS14 cased with sterilized-vermiculite generated primordia 5 days sooner than wild-type strain, confirming the specific role of the AcdS enzyme. Being consistent with the AcdS enzyme activity increased by 84%, the mycelium growth rate was increased by 25%; but, the ACC and ethylene concentrations were reduced by 71% and 36%, respectively, in the A. bisporus-acdS14 transformant. And the bacterium P. sp. UW4 attachment on the mycelium of the A. bisporus-acdS14 transformant was drastically reduced. We conclude that the heterogeneously expressed bacterial acdS gene degrades ACC and reduces ethylene-synthesis, eliminating ethylene inhibition on the mycelium growth and primordium formation in A. bisporus. Our results provide new insights into the mechanism underlying casing soil bacterium, and help formulate a casing-less cultivation for the next-generation mushroom industry.


ACC deaminase Agaricus bisporus Ethylene Pseudomonas sp. UW4 



This work was supported by the National Spark Program of China (Grant No. 2015GA750013).


  1. Bouffaud ML, Renoud S, Dubost A, Moenne-Loccoz Y, Muller D (2018) 1-Aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 6:114CrossRefGoogle Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  3. Burton KS, Smith JF, Wood DA, Thurston CF (1997) Extracellular proteinases from the mycelium of the cultivated mushroom Agaricus bisporus. Mycol Res 101:1341–1347CrossRefGoogle Scholar
  4. Cai WM, Yao HY, Feng WL, Jin QL, Liu YY, Nan-Yi LI, Zheng Z (2009) Microbial community structure of casing soil during mushroom growth. Pedosphere 19:446–452CrossRefGoogle Scholar
  5. Chalutz E, Mattoo AK, Solomos T, Anderson JD (1984) Enhancement by ethylene of cellulysin-induced ethylene production by tobacco leaf discs. Plant Physiol 74:99–103CrossRefGoogle Scholar
  6. Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513CrossRefGoogle Scholar
  7. Chen S, Qiu C, Huang T, Zhou W, Qi Y, Gao Y, Shen J, Qiu L (2013) Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacteria on the hyphal growth and primordium initiation of Agaricus bisporus. Fungal Ecol 6:110–118CrossRefGoogle Scholar
  8. Cheng Y, Wang J, Zhang Y, Yang Q, Qiu L (2015) Application of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacterium for increasing the yield of the button mushroom. Henan Sci 33:1750–1755Google Scholar
  9. Choudhary DK, Agarwal PK, Johri BN (2010) Evaluation of in situ functional activity of casing soils during growth cycle of mushroom (Agaricus bisporus (Lange) Imbach) employing community level physiological profiles (CLPPs). Indian J Microbiol 50:19–26CrossRefGoogle Scholar
  10. Cochet N, Gillman A, Lebeault JM (1992) Some biological characteristics of the casing soil and their effect during Agaricus bisporus fructification. Eng Life Sci 12:411–419Google Scholar
  11. Colauto NB, Fermor TR, Eira AF, Linde GA (2016) Pseudomonas putida stimulates primordia on Agaricus bitorquis. Curr Microbiol 72:482–488CrossRefGoogle Scholar
  12. Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR (2013) The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS ONE 8:e58640CrossRefGoogle Scholar
  13. Fedorov DN, Ekimova GA, Doronina NV, Trotsenko YA (2013) 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC. FEMS Microbiol Lett 343:70–76CrossRefGoogle Scholar
  14. Fermor TR, Wood DA (1981) Degradation of bacteria by Agaricus bisporus and other fungi. Microbiology 126:377–387CrossRefGoogle Scholar
  15. Glick BR, Karaturovíc DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536CrossRefGoogle Scholar
  16. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68CrossRefGoogle Scholar
  17. Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  18. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242CrossRefGoogle Scholar
  19. Gontia-Mishra I, Sasidharan S, Tiwari S (2014) Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 36:889–898CrossRefGoogle Scholar
  20. Grewal SI, Rainey PB (1991) Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. J Gen Microbiol 137:2761–2768CrossRefGoogle Scholar
  21. Hayes WA, Randle PE, Last FT (1969) The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing. Ann Appl Biol 64:177–187CrossRefGoogle Scholar
  22. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831Google Scholar
  23. Kalberer PP (1985) Influence of the depth of the casing layer on the water extraction from casing soil and substrate by the sporophores, on the yield and on the dry matter content of the fruit bodies of the first three flushes of the cultivated mushroom, Agaricus bisporus. Sci Hortic (Amsterdam) 27:33–43CrossRefGoogle Scholar
  24. Li J, Ovakim DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105CrossRefGoogle Scholar
  25. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagye LG, Ohm RA, Patyshakuliyeva A, Brun A, Aerts AL, Bailey AM, Billette C, Coutinho PM, Deakin G, Doddapaneni H, Floudas D, Grimwood J, Hilden K, Kues U, LaButti KM, Lapidus A, Lindquist EA, Lucas SM, Murat C, Riley RW, Salamov AA, Schmutz J, Subramanian V, Wosten HAB, Xu J, Eastwood DC, Foster GD, Sonnenberg ASM, Cullen D, de Vries RP, Lundell T, Hibbett DS, Henrissat B, Burton KS, Kerrigan RW, Challen MP, Grigoriev IV, Martin F (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506CrossRefGoogle Scholar
  26. Noble R, Dobrovin-Pennington A, Hobbs PJ, Pederby J, Rodger A (2009) Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101:583–591CrossRefGoogle Scholar
  27. Rainey PB (1991a) Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycol Res 95:699–704CrossRefGoogle Scholar
  28. Rainey PB (1991b) Phenotypic variation of Pseudomonas putida and P. tolaasii affects attachment to Agaricus bisporus mycelium. J Gen Microbiol 137:2769–2779CrossRefGoogle Scholar
  29. Rainey PB, Cole ALJ, Fermor TR, Wood DA (1990) A model system for examining involvement of bacteria in basidiome initiation of Agaricus bisporus. Mycol Res 94:191–195CrossRefGoogle Scholar
  30. Ren A, Qin L, Shi L, Dong X, da Mu S, Li YX, Zhao MW (2010) Methyl jasmonate induces ganoderic acid biosynthesis in the basidiomycetous fungus Ganoderma lucidum. Bioresour Technol 101:6785–6790CrossRefGoogle Scholar
  31. Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843CrossRefGoogle Scholar
  32. Shin A, Kim J, Lim SY, Kim G, Sung MK, Lee ES, Ro J (2010) Dietary mushroom intake and the risk of breast cancer based on hormone receptor status. Nutr Cancer 62:476–483CrossRefGoogle Scholar
  33. Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–750PubMedGoogle Scholar
  34. Wood DA (1976) Primordium formation in axenic cultures of Agaricus bisporus (Lange) Sing [England]. J Gen Microbiol 95:313–323CrossRefGoogle Scholar
  35. Zhang C, Huang T, Shen C, Wang X, Qi Y, Shen J, Song A, Qiu L, Ai Y (2016) Downregulation of ethylene production increases mycelial growth and primordia formation in the button culinary-medicinal mushroom, Agaricus bisporus (Agaricomycetes). Int J Med Mushrooms 18:1131–1140CrossRefGoogle Scholar
  36. Zhou W, Huang T, Gao Y, Qi Y, Shen J, Qiu L (2009) Ion chromatography for determination of trace amount 1-aminocyclopropane-1-carboxylic acid (ACC) in mushroom. Plant Physiol Commun 45:807–810Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Biocontrol, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, College of Life SciencesHenan Agricultural UniversityHenanPeople’s Republic of China
  3. 3.College of Life Science and TechnologyHenan Institute of Science and TechnologyXinxiangPeople’s Republic of China
  4. 4.Zhoukou Academy of Agricultural SciencesZhoukouPeople’s Republic of China

Personalised recommendations