Advertisement

Four LysR-type transcriptional regulator family proteins (LTTRs) involved in antibiotic resistance in Aeromonas hydrophila

  • Yuying Fu
  • Qilan Cai
  • Yuqian Wang
  • Wanxin Li
  • Jing Yu
  • Guidi Yang
  • Wenxiong LinEmail author
  • Xiangmin LinEmail author
Original Paper
  • 48 Downloads

Abstract

Aeromonas hydrophila is a Gram-negative bacterium that causes serious infections in aquaculture and exhibits significant multidrug resistance. The LysR-type transcriptional regulator (LTTR) family proteins are a well-known group of transcriptional regulators involved in diverse physiological functions. However, the role of LTTRs in the regulation of bacterial resistance to antibiotics is still largely unknown. In this study, to further investigate the role of four putative LTTR family proteins (A0KIU1, A0KJ82, A0KPK0, and A0KQ63) in antibiotic resistance in A. hydrophila, their genes were cloned and overexpressed in engineered Escherichia coli. After the optimization of experimental conditions including incubation time, temperature, and IPTG concentration, these proteins were successfully purified, and their specific antibodies against mice were obtained. Using western blot analysis, we found that these LTTR family proteins were downregulated in A. hydrophila following antibiotic treatment, indicating that they may be involved in the regulation of antibiotic resistance. Additionally, minimum inhibitory concentration (MIC) assays of chloramphenicol (CM), chlortetracycline (CTC), ciprofloxacin (CF), furazolidone (FZ), and balofloxacin (BF) in E. coli showed that overexpression of these LTTRs led to increased sensitivity to several antibiotics. To further validate their functional role in antibiotic resistance, we demonstrated that bacteria with loss of A0KQ63 (ΔAHA_3980) exhibited multi-drug resistance properties. Our results indicate that these LTTR family proteins may play an important role in the antibiotic resistance of A. hydrophila, and the that underlying mechanisms controlling antibiotic resistance should be further investigated.

Keywords

Aeromonas hydrophila LysR-type transcriptional regulator (LTTR) family protein Antibiotic resistance 

Notes

Acknowledgements

This work was sponsored by grants from NSFC Projects (Nos. 31470238 and 31670129), the Program for Innovative Research Team in Fujian Agricultural and Forestry University (No.712018009), and the Fujian-Taiwan Joint Innovative Center for Germplasm Resources and Cultivation of Crops (FJ 2011 Program, No. 2015–75, China). We also thank Dr. Srinivasan Ramanathan and Accdon (www.accdon.com) for providing linguistic assistance during the preparation of this manuscript.

References

  1. Bartowsky E, Normark S (1993) Interactions of wild-type and mutant AmpR of Citrobacter freundii with target DNA. Mol Microbiol 10:555–565.  https://doi.org/10.1111/j.1365-2958.1993.tb00927 CrossRefPubMedGoogle Scholar
  2. Blumer C, Kleefeld A, Lehnen D, Heintz M, Dobrindt U, Nagy G, Michaelis K, Emody L, Polen T, Rachel R, Wendisch VF, Unden G (2005) Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 151:3287–3298.  https://doi.org/10.1099/mic.0.28098-0 CrossRefPubMedGoogle Scholar
  3. Chen XH, Liu SR, Peng B, Li D, Cheng ZX, Zhu JX, Zhang S, Peng YM, Li H, Zhang TT, Peng XX (2017) Exogenous l-Valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front Immunol 8:207.  https://doi.org/10.3389/fimmu.2017.00207 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cheng ZX, Chu X, Wang SN, Peng XX, Li H (2018) Six genes of ompA family shuffling for development of polyvalent vaccines against Vibrio alginolyticus and Edwardsiella tarda. Fish Shellfish Immunol 75:308–315.  https://doi.org/10.1016/j.fsi.2018.02.022 CrossRefPubMedGoogle Scholar
  5. Connolly JP, Gabrielsen M, Goldstone RJ, Grinter R, Wang D, Cogdell RJ, Walker D, Smith DG, Roe AJ (2016) A highly conserved bacterial D-Serine uptake system links host metabolism and virulence. PLos Pathog 12:e1005359.  https://doi.org/10.1371/journal.ppat.1005359 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dawood MAO, Koshio S (2016) Recent advances in the role of probiotics and prebiotics in carp aquaculture: a review. Aquaculture 454:243–251.  https://doi.org/10.1016/j.aquaculture.2015.12.033 CrossRefGoogle Scholar
  7. Duong LT, Schwarz S, Gross H, Breitbach K, Hochgrafe F, Mostertz J, Eske-Pogodda K, Wagner GE, Steinmetz I, Kohler C (2018) GvmR: a novel LysR-type transcriptional regulator involved in virulence and primary and secondary metabolism of Burkholderia pseudomallei. Front Microbiol 9:935.  https://doi.org/10.3389/fmicb.2018.00935 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fargier E, Mac Aogain M, Mooij MJ, Woods DF, Morrissey JP, Dobson AD, Adams C, O'Gara F (2012) MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 194:3502–3511.  https://doi.org/10.1128/JB.06632-11 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gao X, Wang X, Mao Q, Xu R, Zhou X, Ma Y, Liu Q, Zhang Y, Wang Q (2018) VqsA, a novel LysR-Type transcriptional regulator, coordinates quorum sensing (QS) and is controlled by QS to regulate virulence in the pathogen Vibrio alginolyticus. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.00444-18 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Girgis HS, Harris K, Tavazoie S (2012) Large mutational target size for rapid emergence of bacterial persistence. PNAS 109:12740–12745.  https://doi.org/10.1073/pnas.1205124109 CrossRefPubMedGoogle Scholar
  11. Harikrishnan R, Balasundaram C (2005) Modern trends in Aeromonas hydrophila disease management with fish. Rev Fish Sci 13:281–320.  https://doi.org/10.1080/10641260500320845 CrossRefGoogle Scholar
  12. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332.  https://doi.org/10.1016/j.ijantimicag.2009.12.011 CrossRefPubMedGoogle Scholar
  13. Knapp GS, Hu JC (2010) Specificity of the E coli LysR-type transcriptional regulators. PLoS ONE 5:e15189.  https://doi.org/10.1371/journal.pone.0015189 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ko M, Park C (2000) H-NS-Dependent regulation of flagellar synthesis is mediated by a LysR family protein. J Bacteriol 182:4670–4672.  https://doi.org/10.1128/JB.182.16.4670-4672.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Krin E, Danchin A, Soutourina O (2010) Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol 10:273.  https://doi.org/10.1186/1471-2180-10-273 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee SW, Sim KY, Wendy W, Zulhisyam AK (2016) Peperomia pellucida leaf extract as immunostimulator in controlling motile aeromonad septicemia due to Aeromonas hydrophila in red hybrid tilapia, Oreochromis spp. farming. Vet World 9:231–234.  https://doi.org/10.14202/vetworld.2016.231-234 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Li WX, Yao ZJ, Sun LN, Hu WJ, Cao JJ, Lin WX, Lin XM (2016) Proteomics analysis reveals a potential antibiotic cocktail therapy strategy for Aeromonas hydrophila infection in biofilm. J Proteome Res 15:1810–1820.  https://doi.org/10.1021/acs.jproteome.5b01127 CrossRefPubMedGoogle Scholar
  18. Li WX, Yao ZJ, Zhang XY, Huang F, Lin WX, Lin XM (2017) Global protein expression profile response of planktonic Aeromonas hydrophila exposed to chlortetracycline. World J Microbiol Biotechnol 33:68.  https://doi.org/10.1007/s11274-017-2204-y CrossRefPubMedGoogle Scholar
  19. Li WX, Ali F, Cai QL, Yao ZJ, Sun LN, Lin WX, Lin XM (2018) Quantitative proteomic analysis reveals that chemotaxis is involved in chlortetracycline resistance of Aeromonas hydrophila. J Proteomics 172:143–151.  https://doi.org/10.1016/j.jprot.2017.09.011 CrossRefPubMedGoogle Scholar
  20. Lin XM, Shi M, Masilamoni JG, Dator R, Movius J, Aro P, Smith Y, Zhang J (2015) Proteomic profiling in MPTP monkey model for early Parkinson disease biomarker discovery. Biochim Biophys Acta 1854:779–787.  https://doi.org/10.1016/j.bbapap.2015.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lin HV, Massam-Wu T, Lin CP, Wang YA, Shen YC, Lu WJ, Hsu PH, Chen YH, Borges-Walmsley MI, Walmsley AR (2017) The Vibrio cholerae var regulon encodes a metallo-beta-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor. PLoS ONE 12:e0184255.  https://doi.org/10.1371/journal.pone.0184255 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu Q, Hassan KA, Ashwood HE, Gamage H, Li L, Mabbutt BC, Paulsen IT (2018) Regulation of the aceI multidrug efflux pump gene in Acinetobacter baumannii. J Antimicrob Chemother 73:1492–1500.  https://doi.org/10.1093/jac/dky034 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lu L (2004). Autoinducer 2-based quorum sensing response of Escherichia coli to sub-therapeutic tetracycline exposure. https://oaktrust.library.tamu.edu/handle/1969.1/4198
  24. Lu L, Hume ME, Pillai SD (2005) Autoinducer-2-like activity on vegetable produce and its potential involvement in bacterial biofilm formation on tomatoes. Foodborne Pathog Dis 2(3):242–249.  https://doi.org/10.1089/fpd.2005.242 CrossRefPubMedGoogle Scholar
  25. Lu Z, Takeuchi M, Sato T (2007) The LysR-type transcriptional regulator YofA controls cell division through the regulation of expression of ftsW in Bacillus subtilis. J Bacteriol 189:5642–5651.  https://doi.org/10.1128/JB.00467-07 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Moore JP, Li HF, Engmann ML, Bischof KM, Kunka KS, Harris ME, Tancredi AC, Ditmars FS, Basting PJ, George NS, Bhagwat AA, Slonczewski JL (2019) Benzoate-tolerant Escherichia coli strains from experimental evolution lose the gad regulon, multi-drug efflux pumps, and hydrogenases. BioRxiv.  https://doi.org/10.1101/531178 CrossRefGoogle Scholar
  27. O'Grady EP, Nguyen DT, Weisskopf L, Eberl L, Sokol PA (2011) The Burkholderia cenocepacia LysR-type transcriptional regulator ShvR influences expression of quorum-sensing, protease, type II secretion, and afc genes. J Bacteriol 193:163–176.  https://doi.org/10.1128/JB.00852-10 CrossRefPubMedGoogle Scholar
  28. Ormen O, Regue MQ, Tomas JM, Granum PE (2003) Studies of aerolysin promoters from different Aeromonas spp. Microb Pathog 35:189–196CrossRefGoogle Scholar
  29. Oz T, Guvenek A, Yildiz S, Karaboga E, Tamer YT, Mumcuyan N, Ozan VB, Senturk GH, Cokol M, Yeh P, Toprak E (2014) Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol Biol Evol 31:2387–2401.  https://doi.org/10.1093/molbev/msu191 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Peng B, Lin XP, Wang SN, Yang MJ, Peng XX, Li H (2017) Polyvalent protective immunogens identified from outer membrane proteins of Vibrio parahaemolyticus and their induced innate immune response. Fish Shellfish Immunol 72:104–110.  https://doi.org/10.1016/j.fsi.2017.10.046 CrossRefPubMedGoogle Scholar
  31. Pang HY, Qiu MS, Zhao JM, Hoare R, Monaghan SJ, Song DW, Chang YS, Jian JC (2018) Construction of a Vibrio alginolyticus hopPmaJ (hop) mutant and evaluation of its potential as a live attenuated vaccine in orange-spotted grouper (epinephelus coioides). Fish Shellfish Immunol 76:93–100.  https://doi.org/10.1016/j.fsi.2018.02.012 CrossRefPubMedGoogle Scholar
  32. Raskin C, Gerard C, Donfut S, Giannotta E, Van Driessche G, Van Beeumen J, Dusart J (2003) BlaB, a protein involved in the regulation of Streptomyces cacaoi beta-lactamases, is a penicillin-binding protein. Cell Mol Life Sci 60:1460–1469CrossRefGoogle Scholar
  33. Rice KC, Nelson JB, Patton TG, Yang SJ, Bayles KW (2005) Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J Bacteriol 187:813–821.  https://doi.org/10.1128/JB.187.3.813-821.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626.  https://doi.org/10.1146/annurev.mi.47.100193.003121 CrossRefPubMedGoogle Scholar
  35. Soni KA, Lu L, Jesudhasan PR, Hume ME, Pillai SD (2008) Influence of autoinducer-2 (AI-2) and beef sample extracts on E. coli O157:H7 survival and gene expression of virulence genes yadK and hhA. J Food Sci. 73(3):M135–M139.  https://doi.org/10.1111/j.1750-3841.2007.00654.x CrossRefPubMedGoogle Scholar
  36. Srinivasan VB, Mondal A, Venkataramaiah M, Chauhan NK, Rajamohan G (2013) Role of oxyRKP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae. Microbiology 159:1301–1314.  https://doi.org/10.1099/mic.0.065052-0 CrossRefPubMedGoogle Scholar
  37. Su YB, Peng B, Li H, Cheng ZX, Zhang TT, Zhu JX, Li D, Li MY, Ye JZ, Du CC, Zhang S, Zhao XL, Yang MJ, Peng XX (2018) Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. PNAS 115:1578–1587.  https://doi.org/10.1073/pnas.1714645115 CrossRefGoogle Scholar
  38. Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS (2004) Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J Bacteriol 186:7196–7204.  https://doi.org/10.1128/JB.186.21.7196-7204.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40:277–283Google Scholar
  40. Wyckoff EE, Mey AR, Payne SM (2007) Iron acquisition in Vibrio cholerae. Biometals 20:405–416.  https://doi.org/10.1007/s10534-006-9073-4 CrossRefPubMedGoogle Scholar
  41. Yang SJ, Rice KC, Brown RJ, Patton TG, Liou LE, Park YH, Bayles KW (2005) A LysR-type regulator, CidR, is required for induction of the Staphylococcus aureus cidABC operon. J Bacteriol 187:5893–5900.  https://doi.org/10.1128/JB.187.17.5893-5900.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yang J, Zeng ZH, Yang MJ, Cheng ZX, Peng XX, Li H (2018) NaCl promotes antibiotic resistance by reducing redox states in Vibrio alginolyticus. Environ Microbiol 20:4022–4036.  https://doi.org/10.1111/1462-2920.14443 CrossRefPubMedGoogle Scholar
  43. Yao ZJ, Li WX, Lin Y, Wu Q, Yu FF, Lin WX, Lin XM (2016) proteomic analysis reveals that metabolic flows affect the susceptibility of Aeromonas hydrophila to Antibiotics. Sci Rep 6:39413.  https://doi.org/10.1038/srep39413 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yoon EJ, Chabane YN, Goussard S, Snesrud E, Courvalin P, De E, Grillot-Courvalin C (2015) Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio.  https://doi.org/10.1128/mBio.00309-15 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhang X, Zhu CW, Yin J, Sui Y, Wang YC, Zhai GH (2017) RpoS affects gene expression in Salmonella enterica serovar typhi under early hyperosmotic stress. Curr Microbiol 74:757–761.  https://doi.org/10.1007/s00284-017-1243-9 CrossRefPubMedGoogle Scholar
  46. Zhang DP, Xie CG, Wang RZ, Yang QH, Chen HL, Ling SM, Wang SH, Jia KZ (2018a) Effective preparation of a monoclonal antibody against human chromogranin A for immunohistochemical diagnosis. BMC Biotech 18:25.  https://doi.org/10.1016/0020-711X(76)90106-3 CrossRefGoogle Scholar
  47. Zhang Y, Li JM, Zhang WQ, Shi HL, Luo F, Hikichi Y, Shi XJ, Ohnishi K (2018b) A putative LysR-type transcriptional regulator PrhO positively regulates the type III secretion system and contributes to the virulence of Ralstonia solanacearum. Mol Plant Pathol.  https://doi.org/10.1111/mpp.12660 CrossRefPubMedGoogle Scholar
  48. Zhao L, Zhang HY, Hao TY, Li S (2015) In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria. Food Chem 187:370–377.  https://doi.org/10.1016/j.foodchem.2015.04.108 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  2. 2.Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province UniversityFuzhouPeople’s Republic of China
  3. 3.Agroecological InstituteFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China

Personalised recommendations