Complete genome sequence of the halophilic PHA-producing bacterium Halomonas sp. SF2003: insights into its biotechnological potential

  • Tatiana Thomas
  • Anne Elain
  • Alexis Bazire
  • Stéphane BruzaudEmail author
Original Paper


A halophilic Gram-negative eubacterium was isolated from the Iroise Sea and identified as an efficient producer of polyhydroxyalkanoates (PHA). The strain, designated SF2003, was found to belong to the Halomonas genus on the basis of 16S rRNA gene sequence similarity. Previous biochemical tests indicated that the Halomonas sp. strain SF2003 is capable of supporting various culture conditions which sometimes can be constraining for marine strains. This versatility could be of great interest for biotechnological applications. Therefore, a complete bacterial genome sequencing and de novo assembly were performed using a PacBio RSII sequencer and Hierarchical Genome Assembly Process software in order to predict Halomonas sp. SF2003 metabolisms, and to identify genes involved in PHA production and stress tolerance. This study demonstrates the complete genome sequence of Halomonas sp. SF2003 which contains a circular 4,36 Mbp chromosome, and replaces the strain in a phylogenetic tree. Genes related to PHA metabolism, carbohydrate metabolism, fatty acid metabolism and stress tolerance were identified and a comparison was made with metabolisms of relative species. Genes annotation highlighted the presence of typical genes involved in PHA biosynthesis such as phaA, phaB and phaC and enabled a preliminary analysis of their organization and characteristics. Several genes of carbohydrates and fatty acid metabolisms were also identified which provided helpful insights into both a better knowledge of the intricacies of PHA biosynthetic pathways and of production purposes. Results show the strong versatility of Halomonas sp. SF2003 to adapt to various temperatures and salinity which can subsequently be exploited for industrial applications such as PHA production.


Halomonas sp. SF2003 Halophilic bacteria Genome sequencing Metabolism Polyhydroxyalkanoates (PHA) Stress-related proteins 


Supplementary material

11274_2019_2627_MOESM1_ESM.xlsx (10 kb)
Supplementary material 1 (XLSX 9 KB)
11274_2019_2627_MOESM2_ESM.jpg (174 kb)
Supplementary material 2 (JPG 173 KB)


  1. Andreoni V, Gianfreda L (2007) Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 76:287–308CrossRefPubMedGoogle Scholar
  2. Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174CrossRefPubMedGoogle Scholar
  3. Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K.-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 811–835CrossRefGoogle Scholar
  4. Argandoña M, Vargas C, Reina-Bueno M, Rodríguez-Moya J, Salvador M, Nieto JJ (2012) An extended suite of genetic tools for use in bacteria of the Halomonadaceae: an overview. In: Lorence A (ed) Recombinant gene expression. Humana, Totowa, pp 167–201CrossRefGoogle Scholar
  5. Balabanova L, Nedashkovskaya O, Podvolotskaya A, Slepchenko L, Golotin V, Belik A, Shevchenko L, Son O, Rasskazov V (2016) Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296. Data Brief 8:726–732CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bengtsson S, Karlsson A, Alexandersson T, Quadri L, Hjort M, Johansson P, Morgan-Sagastume F, Anterrieu S, Arcos-Hernandez M, Karabegovic L et al (2017) A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale. New Biotechnol 35:42–53CrossRefGoogle Scholar
  7. Cerrone F, Choudhari SK, Davis R, Cysneiros D, O’Flaherty V, Duane G, Casey E, Guzik MW, Kenny ST, Babu RP et al (2014) Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Appl Microbiol Biotechnol 98:611–620CrossRefPubMedGoogle Scholar
  8. Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31:157–165CrossRefPubMedGoogle Scholar
  9. Chen G-Q, Jiang X-R (2017) Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol 2:192–197CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dash HR, Mangwani N, Chakraborty J, Kumari S, Das S (2013) Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97:561–571CrossRefPubMedGoogle Scholar
  11. de la Haba RR, Arahal DR, Marquez MC, Ventosa A (2010) Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 60:737–748CrossRefPubMedGoogle Scholar
  12. de la Haba RR, Sánchez-Porro C, Ventosa A (2011) Taxonomy, phylogeny, and biotechnological interest of the family Halomonadaceae. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments. Springer, Heidelberg, pp 27–64CrossRefGoogle Scholar
  13. Deák T (2010) Current taxonomy of common foodborne bacteria: part I. Gram-negative phyla of proteobacteria and bacteroidetes. Acta Aliment 39:471–487CrossRefGoogle Scholar
  14. Deroiné M, Le Duigou A, Corre Y-M, Le Gac P-Y, Davies P, César G, Bruzaud S (2014a) Accelerated ageing and lifetime prediction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in distilled water. Polym Test 39:70–78CrossRefGoogle Scholar
  15. Deroiné M, Le Duigou A, Corre Y-M, Le Gac P-Y, Davies P, César G, Bruzaud S (2014b) Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym Degrad Stab 105:237–247CrossRefGoogle Scholar
  16. Diken E, Ozer T, Arikan M, Emrence Z, Oner ET, Ustek D, Arga KY (2015) Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T. SpringerPlus 4:393CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dong Y, Kumar CG, Chia N, Kim P-J, Miller PA, Price ND, Cann IKO, Flynn TM, Sanford RA, Krapac IG et al (2014) Halomonas sulfidaeris -dominated microbial community inhabits a 1.8 km-deep subsurface cambrian sandstone reservoir: microbial community inhabits 1.8 km-deep sandstone. Environ Microbiol 16:1695–1708CrossRefPubMedGoogle Scholar
  18. Elain A, Le Fellic M, Corre Y-M, Le Grand A, Le Tilly V, Audic J-L, Bruzaud S (2015) Rapid and qualitative fluorescence-based method for the assessment of PHA production in marine bacteria during batch culture. World J Microbiol Biotechnol 31:1555–1563CrossRefPubMedGoogle Scholar
  19. Elain A, Le Grand A, Corre Y-M, Le Fellic M, Hachet N, Le Tilly V, Loulergue P, Audic J-L, Bruzaud S (2016) Valorisation of local agro-industrial processing waters as growth media for polyhydroxyalkanoates (PHA) production. Ind Crops Prod 80:1–5CrossRefGoogle Scholar
  20. Fayet O, Ziegelhoffer T, Georgopoulos C (1989) The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fu X-Z, Tan D, Aibaidula G, Wu Q, Chen J-C, Chen G-Q (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91CrossRefPubMedGoogle Scholar
  22. Gao X-Y, Zhi X-Y, Li H-W, Zhou Y, Lapidus A, Han J, Haynes M, Lobos E, Huntemann M, Pati A (2015) Draft genome sequence of Halomonas lutea strain YIM 91125 T (DSM 23508 T) isolated from the alkaline lake Ebinur in Northwest China. Stand Genom Sci 10:1CrossRefGoogle Scholar
  23. Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243CrossRefPubMedGoogle Scholar
  24. Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65:251–259PubMedPubMedCentralGoogle Scholar
  25. Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-Hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 78:3177–3184CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hu D, Chung A-L, Wu L-P, Zhang X, Wu Q, Chen J-C, Chen G-Q (2011) Biosynthesis and characterization of polyhydroxyalkanoate block copolymer P3HB- b -P4HB. Biomacromolecules 12:3166–3173CrossRefPubMedGoogle Scholar
  27. Huo Y-Y, Li Z-Y, Cheng H, Wang C-S, Xu X-W (2014) High quality draft genome sequence of the heavy metal resistant bacterium Halomonas zincidurans type strain B6 T. Stand Genom Sci 9:30CrossRefGoogle Scholar
  28. InterPro, and European BioInformatics Institute (2018). ABC transporter permease MalE (IPR030802). Short name: Permease_MalEGoogle Scholar
  29. Ivanova EP, Vysotskii MV, Svetashev VI, Nedashkovskaya OI, Gorshkova NM, Mikhailov VV, Yumoto N, Shigeri Y, Taguchi T, Yoshikawa S (1999) Characterization of Bacillus strains of marine origin. Int Microbiol 2:267–271PubMedGoogle Scholar
  30. Kaan T, Jürgen B, Schweder T (1999) Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol Gen Genet MGG 262:351–354CrossRefPubMedGoogle Scholar
  31. Kawata Y, Kawasaki K, Shigeri Y (2012) Draft genome sequence of Halomonas sp. strain KM-1, a moderately Halophilic bacterium that produces the bioplastic poly(3-Hydroxybutyrate). J Bacteriol 194:2738–2739CrossRefPubMedPubMedCentralGoogle Scholar
  32. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326CrossRefPubMedGoogle Scholar
  33. Koller M, Braunegg G (2015) Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2:94–121CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kornitzer D, Teff D, Altuvia S, Oppenheim AB (1991) Isolation, characterization, and sequence of an Escherichia coli heat shock gene, htpX. J Bacteriol 173:2944–2953CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kourmentza C, Plcido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM (2017) Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 4:55CrossRefPubMedCentralGoogle Scholar
  36. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lafi FF, Ramirez-Prado JS, Alam I, Bajic VB, Hirt H, Saad MM (2016) Draft genome sequence of Halomonas elongata strain k4, an endophytic growth-promoting bacterium enhancing salinity tolerance In Planta. Genome Announc 4:e01214–e01216PubMedPubMedCentralGoogle Scholar
  38. Laurie AD, Lloyd-Jones G (1999) The phn genes of Burkholderia sp strain RP007 constitute a divergent gene cluster for polyclic aromatic hydrocarbon catabolism pdf. J Bacteriol 181:531–540PubMedPubMedCentralGoogle Scholar
  39. Lemechko P, Le Fellic M, Bruzaud S (2019) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int J Biol Macromol 128:429–434CrossRefPubMedGoogle Scholar
  40. Li M, Chen X, Che X, Zhang H, Wu L-P, Du H, Chen G-Q (2019) Engineering pseudomonas entomophila for synthesis of copolymers with defined fractions of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Metab Eng 52:253–262CrossRefPubMedGoogle Scholar
  41. Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260CrossRefPubMedGoogle Scholar
  42. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375CrossRefPubMedGoogle Scholar
  43. Meyer JL, Dillard BA, Rodgers JM, Ritchie KB, Paul VJ, Teplitski M (2015) Draft genome sequence of Halomonas meridiana R1t3 isolated from the surface microbiota of the Caribbean Elkhorn coral Acropora palmata. Stand Genom Sci 10:75CrossRefGoogle Scholar
  44. Mezzina MP, Wetzler DE, de Almeida A, Dinjaski N, Prieto MA, Pettinari MJ (2015) A phasin with extra talents a polyhydroxyalkanoate granule-associated protein has chaperone activity. Environ Microbiol 17:1765–1776CrossRefPubMedGoogle Scholar
  45. Mnif S, Chamkha M, Sayadi S (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol 107:785–794CrossRefPubMedGoogle Scholar
  46. Mothes G, Schubert T, Harms H, Maskow T (2008) Biotechnological coproduction of compatible solutes and polyhydroxyalkanoates using the genus Halomonas. Eng Life Sci 8:658–662CrossRefGoogle Scholar
  47. Możejko-Ciesielska J, Kiewisz R (2016) Bacterial polyhydroxyalkanoates: still fabulous? Microbiol Res 192:271–282CrossRefPubMedGoogle Scholar
  48. Nomoto T, Yano T (2009) Acetyl-CoA acyltransferase gene disrupted bacterium for producing polyhydroxyalkanoate and method for producing polyhydroxyalkanoate using the same. US7527963B2Google Scholar
  49. Nwinyi OC, Ajayi OO, Amund OO (2016) Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas. Braz J Microbiol 47:551–562CrossRefPubMedPubMedCentralGoogle Scholar
  50. Obruca S, Marova I, Svoboda Z, Mikulikova R (2010) Use of controlled exogenous stress for improvement of poly(3-hydroxybutyrate) production in Cupriavidus necator. Folia Microbiol 55:17–22CrossRefGoogle Scholar
  51. Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36:856–870CrossRefPubMedGoogle Scholar
  52. Patel JH, Thaker VS (2015) Whole genome sequencing of Halomonas sp. SUBG004 isolated from little Rann of Kutch, a desert of India. Genom Data 6:19–20CrossRefPubMedPubMedCentralGoogle Scholar
  53. Prudnikova SV, Boyandin AN, Kalacheva GS, Sinskey AJ (2013) Degradable polyhydroxyalkanoates as herbicide carriers. J Polym Environ 21:675–682CrossRefGoogle Scholar
  54. Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696CrossRefPubMedGoogle Scholar
  55. Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefPubMedGoogle Scholar
  56. Reddy CSK, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146CrossRefPubMedGoogle Scholar
  57. Rehm BH (2003) Polyester synthases: natural catalysts for plastics. Biochemical J 376:15–33CrossRefGoogle Scholar
  58. Rehm BH, Steinbüchel A (1999) Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25:3–19CrossRefPubMedGoogle Scholar
  59. Rehm BHA, Mitsky TA, Steinbuchel A (2001) Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109CrossRefPubMedPubMedCentralGoogle Scholar
  60. Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 183:3967–3973CrossRefPubMedPubMedCentralGoogle Scholar
  61. Romanenko LA, Tanaka N, Svetashev VI, Falsen E (2013) Description of Cobetia amphilecti sp. nov. Cobetia litoralis sp. nov. and Cobetia pacifica sp. nov., classification of Halomonas halodurans as a later heterotypic synonym of Cobetia marina and emended descriptions of the genus Cobetia and Cobetia marina. Int J Syst Evol Microbiol 63:288–297CrossRefPubMedGoogle Scholar
  62. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  63. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248CrossRefPubMedGoogle Scholar
  64. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268CrossRefPubMedGoogle Scholar
  65. Sawabe T, Makino H, Tatsumi M, Nakano K, Tajima K, Iqbal MM, Yumoto I, Ezura Y, Christen R (1998) Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int J Syst Evol Microbiol 48:769–774Google Scholar
  66. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk H-P, Pfeiffer F et al (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T: ectoine metabolism from the Halomonas genome. Environ Microbiol 13:1973–1994CrossRefPubMedPubMedCentralGoogle Scholar
  67. Segura A, Hurtado A, Rivera B, Lazaroaie MM (2008) Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solvent-tolerance properties. J Appl Microbiol 104:1408–1416CrossRefPubMedGoogle Scholar
  68. Seip B, Galinski EA, Kurz M (2011) Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster. Appl Environ Microbiol 77:1368–1374CrossRefPubMedGoogle Scholar
  69. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  70. Sukan A, Roy I, Keshavarz T (2015) Dual production of biopolymers from bacteria. Carbohydr Polym 126:47–51CrossRefPubMedGoogle Scholar
  71. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035CrossRefPubMedGoogle Scholar
  72. Tao W, Lv L, Chen G-Q (2017) Engineering Halomonas species TD01 for enhanced polyhydroxyalkanoates synthesis via CRISPRi. Microb Cell Factories 16:48CrossRefGoogle Scholar
  73. Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–868CrossRefPubMedGoogle Scholar
  74. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449CrossRefPubMedGoogle Scholar
  75. Vinuselvi P, Park JM, Lee JM, Oh K, Ghim C-M, Lee SK (2011) Engineering microorganisms for biofuel production. Biofuels 2:153–166CrossRefGoogle Scholar
  76. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Evol Microbiol 30:485–495Google Scholar
  77. Wang Y, Yin J, Chen G-Q (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65CrossRefPubMedGoogle Scholar
  78. Williamson A, De Santi C, Altermark B, Karlsen C, Hjerde E (2016) Complete genome sequence of Halomonas sp. R5-57. Stand Genom Sci 11:62CrossRefGoogle Scholar
  79. Xu X-W, Wu Y-H, Zhou Z, Wang C-S, Zhou Y-G, Zhang H-B, Wang Y, Wu M (2007) Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624CrossRefPubMedGoogle Scholar
  80. Xu P, Gu Q, Wang W, Wong L, Bower AGW, Collins CH, Koffas MAG (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409CrossRefPubMedGoogle Scholar
  81. Yakimov MM, Golyshin PN, Lang S, Moore ER, Abraham W-R, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Evol Microbiol 48:339–348Google Scholar
  82. Yin J, Chen J-C, Wu Q, Chen G-Q (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442CrossRefPubMedGoogle Scholar
  83. Zhao YH, Li HM, Qin LF, Wang HH, Chen G-Q (2007) Disruption of the polyhydroxyalkanoate synthase gene in Aeromonas hydrophila reduces its survival ability under stress conditions. FEMS Microbiol Lett 276:34–41CrossRefPubMedGoogle Scholar
  84. Zhou Y, Li R, Gao X-Y, Lapidus A, Han J, Haynes M, Lobos E, Huntemann M, Pati A, Ivanova NN et al (2014) High quality draft genome sequence of the slightly halophilic bacterium Halomonas zhanjiangensis type strain JSM 078169T (DSM 21076T) from a sea urchin in southern China. Stand Genom Sci 9:1020–1030CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, Université de Bretagne SudLorientFrance
  2. 2.Laboratoire de Biotechnologie et Chimie Marines, EA3884IUEM, Université de Bretagne-SudLorientFrance

Personalised recommendations