Advertisement

Genotoxic activity of l-asparaginase produced by Streptomyces ansochromogenes UFPEDA 3420

  • Glêzia Renata da Silva Lacerda
  • Jeanne Cristina Lapenda Lins CantaliceEmail author
  • Gláucia Manoella de Souza Lima
  • Luiz Eduardo Félix de Albuquerque
  • Isllan D’Erik Gonçalves da Silva
  • Maria Eliane Bezerra de Melo
  • Mônica Lúcia Adam
  • Silene Carneiro do Nascimento
Original Paper

Abstract

l-asparaginase is an enzyme capable of hydrolyzing the substrate asparagine in aspartic acid and ammonia. Due to this mechanism of action observed, l-asparaginase is widely used in the treatment of Acute Lymphoblastic Leukemia, since these cells use asparagine for their survival. Because it is frequently used as an antineoplastic, it is necessary to evaluate its genotoxic effects. The aim of the present study was to evaluate cellular DNA damage after exposure to l-asparaginase produced by Streptomyces ansochromogenes UFPEDA 3420. NCIH-292, MCF-7 and MOLT-4 neoplastic cell lines and normal PBMC cells were used. l-Asparaginase used in this study was produced by actinobacteria S. ansochromogenes UFPEDA 3420, isolated and purified by chromatographic methods. l-Asparaginase induced micronucleus formation in PBMC cells and tumor lines when compared to the negative control. These data suggest that l-Asp appears to have a genotoxic effect very close to the positive control in normal cells (p < 0.05). The level of genomic damage measured by DNA breaks in alkaline SCGE assay was detected from the lowest concentration (12.5 µg/mL) to the highest concentration (50 µg/mL) for tumor cell lines and PBMC. In view of the above, new genotoxic studies will be carried out to better elucidate l-Asparaginase and its mutagenic potential, still unknown, enough for this drug to be safely used in conventional antineoplastic therapies.

Keywords

l-Asparaginase Genotoxicity Human and normal tumor cell lines 

Notes

Acknowledgements

To the development agency - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the resources made available for this work.

References

  1. Ando M, Sugimoto K, Kitoh T, Sasaki M, Mukai K, Ando J, Oshimi K (2005) Selective apoptosis of natural killer-cell tumours by l-asparaginase. Br J Haematol 130(6):860–868PubMedGoogle Scholar
  2. Araldi RB, Rechiutti T, Mendes E, Ito ES (2014) Mutagenic potential of Cordia ecalyculata alone and in association with Spirulina maxima for their evaluation as candidate anti-obesity drugs, Genet. Mol. Res. 13 (2014)Google Scholar
  3. Barcelos GRM, Grotto D, Serpeloni JM, Angeli JPF, Rocha BA, de Oliveira Souza VC, Knasmüller S (2011) Protective properties of quercetin against DNA damage and oxidative stress induced by methylmercury in rats. Arch toxicol 85(9):1151–1157PubMedGoogle Scholar
  4. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Van Wezel GP (2016) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43PubMedGoogle Scholar
  5. Batool T, Makky EA, Jalal M, Yusoff MM (2016) A comprehensive review on l-asparaginase and its applications. Appl Biochem Biotechnol 178(5):900–923PubMedGoogle Scholar
  6. Beale GH, Price JR, Sturgess VC (1941) A survey of anthocyanins VII. The natural selection of flower colour. Proc R Soc Lond B 130(858):113-126Google Scholar
  7. Bonassi S, Au WW (2002) Biomarkers in molecular epidemiology studies for health risk prediction. Mutat Res/Rev Mutat Res 511(1):73–86Google Scholar
  8. Bruneau L, Chapman R, Marsolais F (2006) Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase. Planta 224(3):668–679PubMedGoogle Scholar
  9. Collins AR (2004) The comet assay for DNA damage and repair. Mol Biotechnol 26(3):249PubMedPubMedCentralGoogle Scholar
  10. Da Silva Lacerda GR, De Melo CML, De Araújo Soares AK, Moreira LR, Coriolano MC, De Souza Lima GM, Do Nascimento SC (2018) l-asparaginase isolated from Streptomyces ansochromogenes promotes Th1 profile and activates CD8+ T cells in human PBMC: an in vitro investigation. J Appl Microbiol 124(5):1122–1130PubMedGoogle Scholar
  11. El-Sabbagh SM, El-Batanony NH, Salem TA (2013) l-Asparaginase produced by Streptomyces strain isolated from Egyptian soil: purification, characterization and evaluation of its anti-tumor. Afr J Microbiol Res 7(50):5677–5686Google Scholar
  12. Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res/Fundam Mol Mech Mutagenesis 285(1):35–44Google Scholar
  13. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res Environ Mutagen Relat Subj 147(1–2):29–36Google Scholar
  14. Gruson B, Vaida I, Merlusca L, Charbonnier A, Parcelier A, Damaj G, Marolleau JP (2013) l-asparaginase with methotrexate and dexamethasone is an effective treatment combination in blastic plasmacytoid dendritic cell neoplasm. Br J Haematol 163(4):543–545PubMedGoogle Scholar
  15. Hartmann A (2004) Use of the alkaline in vivo Comet assay for mechanistic genotoxi- city investigations. Mutagenesis 19:51–59PubMedGoogle Scholar
  16. Henderson L, Wolfreys A, Fedyk J, Bourner C, Windebank S (1998) The ability of the Comet assay to discriminate between genotoxins and cytotoxinsGoogle Scholar
  17. Heuser VV, Andrade APL, Braga JC (2008) Influence of age and sex on the spontaneous DNA damage detected by micronucleus test and comet assay in mice peripheral blood cells. Cell Biol. Int. 1223–1229Google Scholar
  18. Hsieh HY, Shieh JJ, Chen CJ, Pan MY, Yang SY, Lins SC, Chang CC (2012) Prodigiosin down-regulates SKP2 to induce p27KIP1 stabilization and antiproliferation in human lung adenocarcinoma cells. Br J Pharmacol 166(7):2095–2108PubMedPubMedCentralGoogle Scholar
  19. Hutson JM, Hasthorpe S, Heyns CF (1997) Anatomical and functional aspects of testicular descent and cryptorchidism. Endocr Rev 18(2):259–280PubMedGoogle Scholar
  20. Imada A, Igarasi S, Nakahama K, Isono M (1973) Asparaginase and glutaminase activities of micro-organisms. Microbiology 76(1):85–99Google Scholar
  21. Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of streptomycetes. Microb Ecol 50(1):73–81PubMedGoogle Scholar
  22. Jaccard A et al (2011) Efficacy of l-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood 117:6: 1834–1839PubMedGoogle Scholar
  23. Jimat DN, Mohamed IBF, Azmi AS, Jamal P (2017) Purification and partial characterization of l-asparaginase enzyme produced by newly isolate bacillus sp. IIUM Eng J 18(2):1–10Google Scholar
  24. Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Von der Hude W (2000) Report from the in vitro micronucleus assay working group. Environ Mol Mutagen 35(3):167–172PubMedGoogle Scholar
  25. Kobrinsky NL, Sposto R, Shah NR, Anderson JR, DeLaat C, Morse M, Meadows AT (2001) Outcomes of treatment of children and adolescents with recurrent non-Hodgkin’s lymphoma and Hodgkin’s disease with dexamethasone, etoposide, cisplatin, cytarabine, and l-asparaginase, maintenance chemotherapy, and transplantation: Children’s Cancer Group Study CCG-5912. J Clin Oncol 19(9):2390–2396PubMedGoogle Scholar
  26. Krishnapura PR, Belur PD, Subramanya S (2016) A critical review on properties and applications of microbial l-asparaginases. Crit Rev Microbiol 42(5):720–737PubMedGoogle Scholar
  27. Kumar K, Verma N (2012) The various sources and application of l-asparaginase. Asian J Biochem Pharm Res 3(2):197–202Google Scholar
  28. Lins JCL, De melo MEB, Do nascimento SC, Adam ML (2015) Differential genomic damage in different tumor lines induced by prodigiosin. Anticancer Res 35(6):3325–3332PubMedGoogle Scholar
  29. Loureiro CB (2010) Purificação, conjugação e avaliação in vitro da atividade antineoplásica da l-asparaginase produzida por Aspergillus terreus (cepa PC-1.7. A) (Doctoral dissertation, Universidade de São Paulo)Google Scholar
  30. Malling H (2004) History of the science of mutagenesis from a personal perspective. Environ Mol Mutagen 44:372–386PubMedGoogle Scholar
  31. Mesas JM, Gil JA, Martín JF (1990) Characterization and partial purification of l-asparaginase from Corynebacterium glutamicum. Microbiology 136(3):515–519Google Scholar
  32. Miyamae YM, Yamamoto Y, Sasaki H, Kobayashi M, Igarashi-Soga K, Shimoi et al (1998) Evaluation of a tissue homogenization technique that isolates nuclei for the in vivo single cell gel electrophoresis (comet) assay: a collaborative study by five laboratories. Mutat Res 418:131–140PubMedGoogle Scholar
  33. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63Google Scholar
  34. Muller HJ (1928) The production of mutations by X-rays. Proc Natl Acad Sci 14(9):714–726PubMedGoogle Scholar
  35. Muller H (1959) The production of mutations by X-rays. Proc Natl Acad Sci USA 68:59Google Scholar
  36. Narta UK, Kanwar SS, Azmi W (2007) Pharmacological and clinical evaluation of l-asparaginase in the treatment of leukemia. Crit Rev Oncol Hematol 61(3):208–221PubMedGoogle Scholar
  37. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661PubMedGoogle Scholar
  38. OECD (2014) Test No. 489: In vivo mammalian alkaline comet assayGoogle Scholar
  39. Pinheiro JV, Müller HJ, Schwabe D, Gunkel M, Da Palma JC, Henze G, Boos J (2001) Drug monitoring of low-dose PEG-asparaginase (Oncaspartm) in children with relapsed acute lymphoblastic leukaemia. Br J Haematol 113(1):115–119Google Scholar
  40. Pui CH, Yang JJ, Hunger SP, Pieters R, Schrappe M, Biondi A, Escherich G (2015) Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol 33(27):2938PubMedPubMedCentralGoogle Scholar
  41. Rizzari C, Conter V, Starý J, Colombini A, Moericke A, Schrappe M (2013) Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol 25:S1–S9PubMedGoogle Scholar
  42. Singh SK, Lermo J, Dominguez T, Ordaz M, Espinosa JM, Mena E, Quaas R (1988) The Mexico earthquake of September 19, 1985—a study of amplification of seismic waves in the valley of Mexico with respect to a hill zone site. Earthquake spectra 4(4):653–673.Google Scholar
  43. Singh A, Settleman JEMT (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741PubMedPubMedCentralGoogle Scholar
  44. Snyder RJG (2001) A review of the genotoxicity of marketed pharmaceuticals. Mutat Res 488:151–169PubMedGoogle Scholar
  45. Soto-Cerrato V, Viñals F, Lambert JR, Kelly JA, Pérez-Tomás R (2007) Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3β activity in human breast cancer cells. Mol Cancer Ther 6(1):362–369PubMedGoogle Scholar
  46. Thomas P, Umegaki K, Fenech M (2003) Nucleoplasmic bridges are a sensitive measure of chromosome rearrangement in the cytokinesis-block micronucleus assay. Mutagenesis 18(2):187–194PubMedGoogle Scholar
  47. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221PubMedGoogle Scholar
  48. Verma N, Kumar K, Kaur G, Anand S (2007) l-asparaginase: a promising chemotherapeutic agent. Crit Rev Biotechnol 27(1):45–62PubMedGoogle Scholar
  49. Ward LS (2002) Understanding the molecular process of tumorigenesis. Arquivos Brasileiros de Endocrinologia Metabologia 46(4):351–360Google Scholar
  50. Williamson NR, Fineran PC, Leeper FJ, Salmond GP (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4(12):887PubMedGoogle Scholar
  51. Yunis AA, Arimura GK, Russin DJ (1977) Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 19(1):128–135PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Glêzia Renata da Silva Lacerda
    • 1
  • Jeanne Cristina Lapenda Lins Cantalice
    • 3
    Email author
  • Gláucia Manoella de Souza Lima
    • 1
  • Luiz Eduardo Félix de Albuquerque
    • 1
  • Isllan D’Erik Gonçalves da Silva
    • 1
  • Maria Eliane Bezerra de Melo
    • 2
  • Mônica Lúcia Adam
    • 3
  • Silene Carneiro do Nascimento
    • 4
  1. 1.Laboratory of Microorganisms Collection, Department of AntibioticsFederal University of PernambucoRecifeBrazil
  2. 2.Department of Parasitology, Laboratory of MutagenesisAggeu Magalhães Research CenterRecifeBrazil
  3. 3.Department of Antibiotics, Cell Culture LaboratoryFederal University of PernambucoRecifeBrazil
  4. 4.Department of Animal Biology, Laboratory of Evolutionary and Ambient GeneticsFederal University of PernambucoRecifeBrazil

Personalised recommendations