Advertisement

A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted hydrothermal ecosystems

  • Maximiliano J. Amenabar
  • Eric S. BoydEmail author
Review
  • 79 Downloads

Abstract

Prior to the advent of oxygenic photosynthesis ~ 2.8–3.2 Ga, life was dependent on chemical energy captured from oxidation–reduction reactions involving minerals or substrates generated through interaction of water with minerals. Terrestrial hydrothermal environments host abundant and diverse non-photosynthetic communities and a variety of minerals that can sustain microbial metabolism. Minerals and substrates generated through interaction of minerals with water are differentially distributed in hot spring environments which, in turn, shapes the distribution of microbial life and the metabolic processes that support it. Emerging evidence suggests that terrestrial hydrothermal environments may have played a role in supporting the metabolism of the earliest forms of microbial life. It follows that these environments and their microbial inhabitants are increasingly being studied as analogs of early Earth ecosystems. Here we review current understanding of the processes that lead to variation in the availability of minerals or mineral-sourced substrates in terrestrial hydrothermal environments. In addition, we summarize proposed mechanisms of mineral substrate acquisition and metabolism in microbial cells inhabiting terrestrial hydrothermal environments, highlighting the importance of the dynamic interplay between biotic and abiotic reactions in influencing mineral substrate bioavailability. An emphasis is placed on mechanisms involved in the solubilization, acquisition, and metabolism of sulfur- and iron-bearing minerals, since these elements were likely integrated into the metabolism of the earliest anaerobic cells.

Keywords

Elemental sulfur Iron oxide Ferrous iron Sulfide Archaea Thermophile Hot springs Yellowstone 

Notes

Acknowledgements

This work was supported by a NSF Grant (EAR-1820658) to ESB. MJA acknowledges support from the CONICYT Becas-Chile fellowship program.

References

  1. Allen ET, Day AL (1935) Hot springs of the Yellowstone national park. Carnegie Institution of Washington, WashingtonGoogle Scholar
  2. Amenabar MJ, Boyd ES (2018) Mechanisms of mineral substrate acquisition in a thermoacidophile Appl Environ Microbiol 84  https://doi.org/10.1128/AEM.00334-18
  3. Amenabar MJ, Urschel MR, Boyd ES (2015) Metabolic and taxonomic diversification in continental magmatic hydrothermal systems. In: Bakermans C (ed) Microbial evolution under extreme conditions. De Gruyter, Berlin, pp 57–96Google Scholar
  4. Amenabar MJ, Shock EL, Roden EE, Peters JW, Boyd ES (2017) Microbial substrate preference dictated by energy demand rather than supply. Nat Geosci 10:577–581.  https://doi.org/10.1038/ngeo2978 CrossRefGoogle Scholar
  5. Amenabar MJ, Colman DR, Poudel S, Roden EE, Boyd ES (2018) Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile. Environ Microbiol 20:2523–2537.  https://doi.org/10.1111/1462-2920.14270 CrossRefPubMedGoogle Scholar
  6. Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria FEMS. Microbiol Rev 25:175–243.  https://doi.org/10.1016/S0168-6445(00)00062-0 CrossRefGoogle Scholar
  7. Amils R et al (2004) Importance of chemolithotrophy for early life on Earth: the Tinto River (Iberian Pyritic Belt) case. In: Seckbach J (ed) Origins. Cellular origin, life in extreme habitats and astrobiology, vol 6. Springer, Dordrecht, pp 463–480Google Scholar
  8. Ball JW, McMleskey RB, Nordstrom DK (2010) Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006–2008. US Geological SurveyGoogle Scholar
  9. Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol B 15:327–345.  https://doi.org/10.1007/Bf01808177 CrossRefGoogle Scholar
  10. Beam JP, Bernstein HC, Jay ZJ, Kozubal MA, deM Jennings R, Tringe SG, Inskeep WP (2016) Assembly and succession of iron oxide microbial mat communities in acidic geothermal springs. Front Microbiol.  https://doi.org/10.3389/fmicb.2016.00025 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Beliaev AS, Saffarini DA, McLaughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730.  https://doi.org/10.1046/j.1365-2958.2001.02257.x CrossRefPubMedGoogle Scholar
  12. Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice Hall, Englewood CliffsGoogle Scholar
  13. Blumentals II, Itoh M, Olson GJ, Kelly RM (1990) Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1255–1262PubMedPubMedCentralGoogle Scholar
  14. Boyd ES, Druschel GK (2013) Involvement of intermediate sulfur species in biological reduction of elemental sulfur under acidic, hydrothermal conditions. Appl Environ Microbiol 79:2061–2068.  https://doi.org/10.1128/Aem.03160-12 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boyd ES et al (2007) Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in yellowstone national park. Appl Environ Microbiol 73:6669–6677.  https://doi.org/10.1128/Aem.01321-07 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Boyd ES, Leavitt WD, Geesey GG (2009) CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring. Appl Environ Microbiol 75:4289–4296.  https://doi.org/10.1128/Aem.02751-08 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boyd ES, Hamilton TL, Spear JR, Lavin M, Peters JW (2010) [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism. ISME J 4:1485–1495.  https://doi.org/10.1038/ismej.2010.76 CrossRefPubMedGoogle Scholar
  18. Boyd ES, Fecteau KM, Havig JR, Shock EL, Peters JW (2012) Modeling the habitat range of phototrophs in Yellowstone National Park: toward the development of a comprehensive fitness landscape. Front Microbiol.  https://doi.org/10.3389/fmicb.2012.00221 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boyd ES, Schut GJ, Adams MW, Peters JW (2014) Hydrogen metabolism the evolution of biological respiration. Microbe 9:361–367Google Scholar
  20. Brock TD (1967) Life at high temperatures. Science 158:1012–1019.  https://doi.org/10.1126/science.158.3804.1012 CrossRefPubMedGoogle Scholar
  21. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: New genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68.  https://doi.org/10.1007/Bf00408082 CrossRefPubMedGoogle Scholar
  22. Canfield DE, Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723.  https://doi.org/10.2475/ajs.299.7-9.697 CrossRefGoogle Scholar
  23. Canganella F, Wiegel J (2014) Anaerobic thermophiles. Life 4:77–104.  https://doi.org/10.3390/life4010077 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537.  https://doi.org/10.1021/es60065a008 CrossRefGoogle Scholar
  25. Childers SE, Lovley DR (2001) Differences in Fe (III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe (III)-reducing bacteria FEMS. Microbiol Lett 195:253–258.  https://doi.org/10.1111/j.1574-6968.2001.tb10529.x CrossRefGoogle Scholar
  26. Christiansen RL, Foulger GR, Evans JR (2002) Upper-mantle origin of the Yellowstone hotspot Geol Soc Am Bull 114:1245–1256  https://doi.org/10.1130/0016-7606(2002)114%3C1245:Umooty>2.0.Co;2CrossRefGoogle Scholar
  27. Colman DR, Feyhl-Buska J, Robinson KJ, Fecteau KM, Xu H, Shock EL, Boyd ES (2016) Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs Fems. Microbiol Ecol 92:fiw137.  https://doi.org/10.1093/femsec/fiw137 CrossRefGoogle Scholar
  28. Colman DR, Poudel S, Hamilton TL, Havig JR, Selensky MJ, Shock EL, Boyd ES (2018) Geobiological feedbacks and the evolution of thermoacidophiles. ISME J 12:225–236.  https://doi.org/10.1038/ismej.2017.162 CrossRefPubMedGoogle Scholar
  29. Corliss JB, Baross J, Hoffman S (1981) An hypothesis concerning the relationships between submarine hot springs and the origin of life on earth. Oceanol Acta (0399–1784). Special issueGoogle Scholar
  30. Cox A, Shock EL, Havig JR (2011) The transition to microbial photosynthesis in hot spring ecosystems. Chem Geol 280:344–351.  https://doi.org/10.1016/j.chemgeo.2010.11.022 CrossRefGoogle Scholar
  31. Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun.  https://doi.org/10.1038/ncomms15263 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Drobner E, Huber H, Wachtershauser G, Rose D, Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic condition. Nature 346:742–744.  https://doi.org/10.1038/346742a0 CrossRefGoogle Scholar
  33. Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp nov. Extremophiles 6:309–318.  https://doi.org/10.1007/s00792-001-0259-y CrossRefPubMedGoogle Scholar
  34. Edwards KJ et al (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain. Calif Geomicrobiol J 16:155–179CrossRefGoogle Scholar
  35. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 287:1796–1799.  https://doi.org/10.1126/science.287.5459.1796 CrossRefPubMedGoogle Scholar
  36. Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758.  https://doi.org/10.1126/science.289.5480.756 CrossRefPubMedGoogle Scholar
  37. Feinberg LF, Holden JF (2006) Characterization of dissimilatory Fe(III) versus NO3 reduction in the hyperthermophilic archaeon Pyrobaculum aerophilum. J Bacteriol 188:4163–4163.  https://doi.org/10.1128/Jb.00515-06 CrossRefPubMedCentralGoogle Scholar
  38. Feinberg LF, Srikanth R, Vachet RW, Holden JF (2008) Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl Environ Microbiol 74:396–402.  https://doi.org/10.1128/Aem.02033-07 CrossRefPubMedGoogle Scholar
  39. Findlay AJ (2016) Microbial impact on polysulfide dynamics in the environment FEMS. Microbiol Lett.  https://doi.org/10.1093/femsle/fnw103 CrossRefGoogle Scholar
  40. Fortney NW, He S, Converse BJ, Beard BL, Johnson CM, Boyd ES, Roden EE (2016) Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring Yellowstone National Park. Geobiology 14:255–275.  https://doi.org/10.1111/gbi.12173 CrossRefPubMedGoogle Scholar
  41. Fortney NW, He SM, Converse BJ, Boyd ES, Roden EE (2018a) Investigating the composition and metabolic potential of microbial communities in Chocolate Pots hot springs. Front Microbiol 9:2075.  https://doi.org/10.3389/fmicb.2018.02075 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fortney NW, He SM, Kulkarni A, Friedrich MW, Holz C, Boyd ES, Roden EE (2018b) Stable isotope probing for microbial iron reduction in Chocolate Pots hot spring Yellowstone National Park. Appl Environ Microbiol 84:e02894–e02817.  https://doi.org/10.1128/AEM.02894-17 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fournier RO (1989) Geochemistry and dynamics of the Yellowstone National Park hydrothermal system. Annu Rev Earth Pl Sc 17:13–53.  https://doi.org/10.1146/annurev.ea.17.050189.000305 CrossRefGoogle Scholar
  44. Fredrickson JK et al (2008) Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603.  https://doi.org/10.1038/nrmicro1947 CrossRefPubMedGoogle Scholar
  45. Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882.  https://doi.org/10.1128/Aem.67.7.2873-2882.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fuseler K, Cypionka H (1995) Elemental sulfur as an intermediate of sulfide oxidation with oxygen by Desulfobulbus propionicus. Arch Microbiol 164:104–109.  https://doi.org/10.1007/bf02525315 CrossRefGoogle Scholar
  47. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643.  https://doi.org/10.1099/mic.0.037143-0 CrossRefPubMedGoogle Scholar
  48. Garcia AA, Druschel GK (2014) Elemental sulfur coarsening kinetics. Geochem Trans 15:11.  https://doi.org/10.1186/s12932-014-0011-z CrossRefPubMedPubMedCentralGoogle Scholar
  49. Gavrilov SN, Lloyd JR, Kostrikina NA, Slobodkin AI (2012) Fe(III) oxide reduction by a gram-positive thermophile: physiological mechanisms for dissimilatory reduction of poorly crystalline Fe(III) oxide by a thermophilic gram-positive bacterium Carboxydothermus ferrireducens. Geomicrobiol J 29:804–819.  https://doi.org/10.1080/01490451.2011.635755 CrossRefGoogle Scholar
  50. Gest BFH, Hayes JM (1984) Isotope effects associated with the anaerobic oxidation of sulfide by the purple photosynthetic bacterium, Chromatium vinosum. FEMS Microbiol Lett 22:283–287CrossRefGoogle Scholar
  51. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea FEMS. Microbiol Rev 33:999–1043.  https://doi.org/10.1111/j.1574-6976.2009.00187.x CrossRefGoogle Scholar
  52. Giaveno MA, Urbieta MS, Ulloa JR, Toril EG, Donati ER (2013) Physiologic versatility and growth flexibility as the main characteristics of a novel thermoacidophilic Acidianus strain isolated from copahue geothermal area in. Argentina Microb Ecol 65:336–346.  https://doi.org/10.1007/s00248-012-0129-4 CrossRefPubMedGoogle Scholar
  53. Giggenbach W (1972) Optical-spectra and equilibrium distribution of polysulfide ions in aqueous-solution at 20 degrees. Inorg Chem 11:1201–1207.  https://doi.org/10.1021/ic50112a009 CrossRefGoogle Scholar
  54. Gole MJ, Klein C (1981) Banded iron-formations through much of Precambrian time. J Geol 89:169–183CrossRefGoogle Scholar
  55. Gorby YA et al (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P Natl Acad Sci USA 103:11358–11363.  https://doi.org/10.1073/pnas.0604517103 CrossRefGoogle Scholar
  56. Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65:1–11.  https://doi.org/10.1111/j.1365-2958.2007.05778.x CrossRefPubMedPubMedCentralGoogle Scholar
  57. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen nov, sp nov, a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509.  https://doi.org/10.1099/00207713-47-2-505 CrossRefPubMedGoogle Scholar
  58. Hamilton TL, Vogl K, Bryant DA, Boyd ES, Peters JW (2012) Environmental constraints defining the distribution, composition, and evolution of chlorophototrophs in thermal features of Yellowstone National Park. Geobiology 10:236–249.  https://doi.org/10.1111/j.1472-4669.2011.00296.x CrossRefPubMedGoogle Scholar
  59. Harvey RB (1924) Enzymes of thermal algae. Science 60:481–482.  https://doi.org/10.1126/science.60.1560.481 CrossRefPubMedGoogle Scholar
  60. Hazen RM et al (2008) Mineral evolution. Am Miner 93:1693–1720.  https://doi.org/10.2138/am.2008.2955 CrossRefGoogle Scholar
  61. Heasler HP, Jaworowski C, Foley D (2009) Geothermal systems and monitoring hydrothermal features. In: Rob Young LN (ed) Geological monitoring. The Geological Society of America, Boulder, pp 105–140Google Scholar
  62. Hedderich R, Klimmek O, Kroger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides FEMS. Microbiol Rev 22:353–381.  https://doi.org/10.1111/j.1574-6976.1998.tb00376.x CrossRefGoogle Scholar
  63. Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58:1562–1571.  https://doi.org/10.1007/Pl00000796 CrossRefPubMedGoogle Scholar
  64. Huang HH, Lin FC, Schmandt B, Farrell J, Smith RB, Tsai VC (2015) The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348:773–776.  https://doi.org/10.1126/science.aaa5648 CrossRefPubMedGoogle Scholar
  65. Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes: a handbook on the biology of bacteria, vol 3. Springer, New York, pp 23–51.  https://doi.org/10.1007/0-387-30743-5_3 CrossRefGoogle Scholar
  66. Huber H, Stetter KO (2015) Acidianus. In: Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Inc., pp 1–5Google Scholar
  67. Inskeep W, McDermott T (2005) Geomicrobiology of acid-sulfate-chloride springs in Yellowstone National Park. In: Inskeep WP, McDermott T (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University Publications, Bozeman, Montana, pp 143–162Google Scholar
  68. Inskeep WP, Macur RE, Harrison G, Bostick BC, Fendorf S (2004) Biomineralization of As(V)-hydrous ferric oxyhydroxide in microbial mats of an acid-sulfate-chloride geothermal spring Yellowstone National Park. Geochim Cosmochim Ac 68:3141–3155.  https://doi.org/10.1016/j.gca.2003.09.020 CrossRefGoogle Scholar
  69. Inskeep WP, Ackerman GG, Taylor WP, Kozubal M, Korf S, Macur RE (2005) On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiology 3:297–317.  https://doi.org/10.1111/j.1472-4669.2006.00059.x CrossRefGoogle Scholar
  70. Inskeep WP, Jay ZJ, Tringe SG, Herrgard MJ, Rusch DB, Co YMPS (2013) The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front Microbiol.  https://doi.org/10.3389/fmicb.2013.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Jelen B, Giovannelli D, Falkowski PG, Vetriani C (2018) Elemental sulfur reduction in the deep-sea vent thermophile Thermovibrio ammonificans. Environ Microbiol 20:2301–2316.  https://doi.org/10.1111/1462-2920.14280 CrossRefGoogle Scholar
  72. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14.  https://doi.org/10.1016/j.scitotenv.2004.09.002 CrossRefPubMedGoogle Scholar
  73. Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu Rev Earth Pl Sc 36:457–493.  https://doi.org/10.1146/annurev.earth.36.031207.124139 CrossRefGoogle Scholar
  74. Johnson DB, Kanao T, Hedrich S (2012) Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol.  https://doi.org/10.3389/fmicb.2012.00096 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kamyshny A (2009) Solubility of cyclooctasulfur in pure water and sea water at different temperatures. Geochim Cosmochim Acta 73:6022–6028.  https://doi.org/10.1016/j.gca.2009.07.003 CrossRefGoogle Scholar
  76. Kamyshny A, Goifman A, Rizkov D, Lev O (2003) Kinetics of disproportionation of inorganic polysulfides in undersaturated aqueous solutions at environmentally relevant conditions. Aquat Geochem 9:291–304.  https://doi.org/10.1023/B:AQUA.0000029023.07252.c3 CrossRefGoogle Scholar
  77. Kamyshny A, Gun J, Rizkov D, Voitsekovski T, Lev O (2007) Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization Environ Sci Technol 41:2395–2400  https://doi.org/10.1021/es062637&%23x002B; CrossRefPubMedGoogle Scholar
  78. Kamyshny A, Druschel G, Mansaray ZF, Farquhar J (2014) Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs. Geochem Trans 15:7  https://doi.org/10.1186/1467-4866-15-7 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kaplan IR, Rittenberg SC (1962) Fractionation of isotopes in relation to the problem of elemental sulphur transport by micro-organisms. Nature 194:1098.  https://doi.org/10.1038/1941098a0 CrossRefPubMedGoogle Scholar
  80. Kashefi K, Lovley DR (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum. Appl Environ Microbiol 66:1050–1056.  https://doi.org/10.1128/Aem.66.3.1050-1056.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934–934.  https://doi.org/10.1126/science.1086823 CrossRefPubMedGoogle Scholar
  82. Kashefi K, Moskowitz BM, Lovley DR (2008a) Characterization of extracellular minerals produced during dissimilatory Fe(III) and U(VI) reduction at 100 degrees C by Pyrobaculum islandicum. Geobiology 6:147–154.  https://doi.org/10.1111/j.1472-4669.2007.00142.x CrossRefPubMedGoogle Scholar
  83. Kashefi K, Shelobolina ES, Elliott WC, Lovley DR (2008b) Growth of thermophilic and hyperthermophilic Fe (III)-reducing microorganisms on a ferruginous smectite as the sole electron acceptor. Appl Environ Microbiol 74:251–258.  https://doi.org/10.1128/Aem.01580-07 CrossRefPubMedGoogle Scholar
  84. Kharaka YK, Thordsen JJ, White LD (2002) Isotope and chemical compositions of meteoric and thermal waters and snow from the greater Yellowstone National Park region. Geological Survey, Menlo ParkCrossRefGoogle Scholar
  85. Kleinjan WE, de Keizer A, Janssen AJH (2005) Kinetics of the reaction between dissolved sodium sulfide and biologically produced sulfur. Ind Eng Chem Res 44:309–317.  https://doi.org/10.1021/ie049579q CrossRefGoogle Scholar
  86. Kletzin A, Urich T, Muller F, Bandeiras TM, Gomes CM (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic Archaea. J Bioenerg Biomembr 36:77–91.  https://doi.org/10.1023/B:JOBB.0000019600.36757.8c CrossRefPubMedGoogle Scholar
  87. Klimmek O, Kroger A, Steudel R, Holdt G (1991) Growth of Wolinella succinogenes with polysulfide as terminal acceptor of phosphorylative electron-transport. Arch Microbiol 155:177–182.  https://doi.org/10.1007/Bf00248614 CrossRefGoogle Scholar
  88. Kozubal M, Macur RE, Korf S, Taylor WP, Ackerman GG, Nagy A, Inskeep WP (2008) Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park. Appl Environ Microbiol 74:942–949.  https://doi.org/10.1128/Aem.01200-07 CrossRefPubMedGoogle Scholar
  89. Kozubal MA et al (2012) Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochennical processes, and isolation of novel Fe-active microorganisms. Front Microbiol 3:109.  https://doi.org/10.3389/fmicb.2012.00109 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18.  https://doi.org/10.1007/s00027-003-0690-5 CrossRefGoogle Scholar
  91. Langner HW, Jackson CR, Mcdermott TR, Inskeep WP (2001) Rapid oxidation of arsenite in a hot spring ecosystem Yellowstone National Park. Environ Sci Technol 35:3302–3309.  https://doi.org/10.1021/es0105562 CrossRefPubMedGoogle Scholar
  92. Laska S, Lottspeich F, Kletzin A (2003) Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. Microbiology 149:2357–2371.  https://doi.org/10.1099/mic.0.26455-0 CrossRefPubMedGoogle Scholar
  93. Lindsay MR et al (2018) Subsurface processes influence oxidant availability and chemoautotrophic hydrogen metabolism in Yellowstone hot springs. Geobiology 16:674–692.  https://doi.org/10.1111/gbi.12308 CrossRefPubMedGoogle Scholar
  94. Liu YM et al (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens. PCA Env Microbiol Rep 6:776–785.  https://doi.org/10.1111/1758-2229.12204 CrossRefGoogle Scholar
  95. Lorenson GW (2006) Application of in situ au-amalgam microelectrodes in yellowstone national park to guide microbial sampling: an investigation into arsenite and polysulfide detection to define microbial habitats. University of Vermont, BurlingtonGoogle Scholar
  96. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287PubMedPubMedCentralGoogle Scholar
  97. Lovley DR (2004) Potential role of dissimilatory iron reduction in the early evolution of microbial respiration. In: Seckbach J (ed) Origins. Genesis, evolution and diversity of life. Springer, Dordrecht, pp 299–313Google Scholar
  98. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286.  https://doi.org/10.1016/S0065-2911(04)49005-5 CrossRefPubMedGoogle Scholar
  99. Lowenstern JB, Bergfeld D, Evans WC, Hurwitz S (2012) Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin. Geochem Geophys Geosyst 13:1–20CrossRefGoogle Scholar
  100. Lowenstern JB, Bergfeld D, Evans WC, Hunt AG (2015) Origins of geothermal gases at Yellowstone. J Volcanol Geoth Res 302:87–101.  https://doi.org/10.1016/j.jvolgeores.2015.06.010 CrossRefGoogle Scholar
  101. Luther GW, Findlay AJ, MacDonald DJ, Owings SM, Hanson TE, Beinart RA, Girguis PR (2011) Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol 2:62.  https://doi.org/10.3389/fmicb.2011.00062 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315.  https://doi.org/10.1038/nature13068 CrossRefPubMedGoogle Scholar
  103. Macur RE, Jay ZJ, Taylor W, Kozubal MA, Kocar BD, Inskeep WP (2013) Microbial community structure and sulfur biogeochemistry in mildly-acidic sulfidic geothermal springs in Yellowstone National Park. Geobiology 11:86–99.  https://doi.org/10.1111/gbi.12015 CrossRefPubMedGoogle Scholar
  104. Magnuson TS, Isoyama N, Hodges-Myerson AL, Davidson G, Maroney MJ, Geesey GG, Lovley DR (2001) Isolation, characterization and gene sequence analysis of a membrane-associated 89 kDa Fe(III) reducing cytochrome c from Geobacter sulfurreducens. Biochem J 359:147–152.  https://doi.org/10.1042/0264-6021:3590147 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Malvankar NS et al (2015) Structural basis for metallic-like conductivity in microbial nanowires. mBio.  https://doi.org/10.1128/mBio.00084-15 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973.  https://doi.org/10.1073/pnas.0710525105 CrossRefPubMedGoogle Scholar
  107. McKenzie WF, Truesdell A (1977) Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes. Geothermics 5:51–61CrossRefGoogle Scholar
  108. Miller SL, Bada JL (1988) Submarine hot springs and the origin of life. Nature 334:609–611.  https://doi.org/10.1038/334609a0 CrossRefPubMedGoogle Scholar
  109. Millero FJ (1986) The pH of estuarine waters. Limnol Oceanogr 31:839–847.  https://doi.org/10.4319/lo.1986.31.4.0839 CrossRefGoogle Scholar
  110. Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere 68:2080–2084.  https://doi.org/10.1016/j.chemosphere.2007.02.015 CrossRefPubMedGoogle Scholar
  111. Morris J (1975) The physiology of obligate anaerobiosis. Adv Microbial Physiol 12:169–246.  https://doi.org/10.1016/S0065-2911(08)60282-9 CrossRefGoogle Scholar
  112. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria Nat Rev Microbiol 6:441–454  https://doi.org/10.1038/nrmicro1892 CrossRefPubMedGoogle Scholar
  113. Myers JM, Myers CR (2001) Role for outer membrane cytochromes OmcA and OmcB of Shewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl Environ Microbiol 67:260–269.  https://doi.org/10.1128/Aem.67.1.260-269.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Nealson KH, Scott J (2006) Ecophysiology of the genus Shewanella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 1133–1151CrossRefGoogle Scholar
  115. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97.  https://doi.org/10.1038/35011098 CrossRefPubMedGoogle Scholar
  116. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091.  https://doi.org/10.1038/35059210 CrossRefPubMedGoogle Scholar
  117. Nordstrom DK, Ball JW, McCleskey RB (2004) Oxidation reactions for reduced Fe, As, and S in thermal outflows of Yellowstone National Park: biotic or abiotic? In: Wanty RB, Seal IIRR (eds) Water-rock interaction. Taylor & Francis Group, LondonGoogle Scholar
  118. Nordstrom DK, Ball JW, McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. In: Inskeep WP, McDermott T (eds) Geothermal biology and geochemistry in Yellowstone National Park. Montana State University Publications, Bozeman, Montana, pp 73–94Google Scholar
  119. Nordstrom DK, McCleskey RB, Ball JW (2009) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters. Appl Geochem 24:191–207.  https://doi.org/10.1016/j.apgeochem.2008.11.019 CrossRefGoogle Scholar
  120. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740.  https://doi.org/10.1126/science.276.5313.734 CrossRefPubMedGoogle Scholar
  121. Philippot P, Van Zuilen M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early archaean microorganisms preferred elemental sulfur not sulfate. Science 317:1534–1537.  https://doi.org/10.1126/science.1145861 CrossRefPubMedGoogle Scholar
  122. Pierson BK, Parenteau MN (2000) Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs FEMS. Microbiol Ecol 32:181–196CrossRefGoogle Scholar
  123. Power JF et al (2018) Microbial biogeography of 925 geothermal springs in New Zealand. Nat Commun 9:2876.  https://doi.org/10.1038/s41467-018-05020-y CrossRefPubMedPubMedCentralGoogle Scholar
  124. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101.  https://doi.org/10.1038/nature03661 CrossRefPubMedGoogle Scholar
  125. Reysenbach AL et al (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447.  https://doi.org/10.1038/nature04921 CrossRefPubMedGoogle Scholar
  126. Richardson DJ (2000) Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–571.  https://doi.org/10.1099/00221287-146-3-551 CrossRefPubMedGoogle Scholar
  127. Rickard D (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125 degrees C: the rate equation. Geochim Cosmochim Acta 61:115–134.  https://doi.org/10.1016/S0016-7037(96)00321-3 CrossRefGoogle Scholar
  128. Rickard D, Luther GW 3rd (2007) Chemistry of iron sulfides. Chem Rev 107:514–562.  https://doi.org/10.1021/cr0503658 CrossRefPubMedGoogle Scholar
  129. Roberts JA, Kenward PA, Fowle DA, Goldstein RH, Gonzalez LA, Moore DS (2013) Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Natl Acad Sci USA 110:14540–14545.  https://doi.org/10.1073/pnas.1305403110 CrossRefPubMedGoogle Scholar
  130. Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628.  https://doi.org/10.1021/es9506216 CrossRefGoogle Scholar
  131. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101.  https://doi.org/10.1038/35059215 CrossRefPubMedGoogle Scholar
  132. Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363.  https://doi.org/10.1016/j.tibs.2004.05.007 CrossRefPubMedGoogle Scholar
  133. Rye RO, Truesdell AH (2007) The question of recharge to the deep thermal reservoir underlying the geysers and hot springs of Yellowstone National Park. In: Morgan LA (ed) Integrated geoscience studies in the greater Yellowstone area-Volcanic, tectonic, and hydrothermal processes in the Yellowstone geoecosystem. U.S. Geological Survey Professional PaperGoogle Scholar
  134. Schauder R, Kröger A (1993) Bacterial sulphur respiration. Arch Microbiol 159:491–497.  https://doi.org/10.1007/bf00249025 CrossRefGoogle Scholar
  135. Schauder R, Muller E (1993) Polysulfide as a possible substrate for sulfur-reducing bacteria. Arch Microbiol 160:377–382CrossRefGoogle Scholar
  136. Schut GJ, Bridger SL, Adams MWW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189:4431–4441.  https://doi.org/10.1128/Jb.00031-07 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Schut GJ, Boyd ES, Peters JW, Adams MWW (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications FEMS. Microbiol Rev 37:182–203.  https://doi.org/10.1111/j.1574-6976.2012.00346.x CrossRefGoogle Scholar
  138. Schut GJ, Zadvornyy O, Wu CH, Peters JW, Boyd ES, Adams MWW (2016) The role of geochemistry and energetics in the evolution of modern respiratory complexes from a proton-reducing ancestor. BBA-Bioenergetics 1857:958–970.  https://doi.org/10.1016/j.bbabio.2016.01.010 CrossRefPubMedGoogle Scholar
  139. Schwartzman DW, Lineweaver CH (2004) The hyperthermophilic origin of life revisited. Biochem Soc T 32:168–171.  https://doi.org/10.1042/Bst0320168 CrossRefGoogle Scholar
  140. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov. sp. nov., and Acidianus brierleyi Comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564.  https://doi.org/10.1099/00207713-36-4-559 CrossRefGoogle Scholar
  141. Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20.  https://doi.org/10.1111/j.1365-2958.2007.05783.x CrossRefPubMedPubMedCentralGoogle Scholar
  142. Shi LA, Richardson DJ, Wang ZM, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK (2009) The roles of outer membrane cytochromes of Shewanella. and Geobacter in extracellular electron transfer. Environ Microbiol Rep 1:220–227.  https://doi.org/10.1111/j.1758-2229.2009.00035.x CrossRefPubMedGoogle Scholar
  143. Shi L et al (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14:651–662.  https://doi.org/10.1038/nrmicro.2016.93 CrossRefPubMedGoogle Scholar
  144. Shock EL, McCollom T, Schulte MD (1995) The emergence of metabolism from within hydrothermal systems. In: Wiegel J, Adams MWW (eds) Thermophiles. The keys to molecular evolution and the origin of life? CRC Press, Boca Raton, pp 59–76Google Scholar
  145. Shock EL, Holland M, Meyer-Dombard D, Amend JP, Osburn GR, Fischer TP (2010) Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park. USA Geochim Cosmochim Acta 74:4005–4043.  https://doi.org/10.1016/j.gca.2009.08.036 CrossRefGoogle Scholar
  146. Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiology 74:501–514  https://doi.org/10.1007/s11021-005-0096-6 CrossRefGoogle Scholar
  147. Slobodkin A, Reysenbach AL, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen nov, sp nov, a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547.  https://doi.org/10.1099/00207713-47-2-541 CrossRefPubMedGoogle Scholar
  148. Slobodkin AI, Tourova TP, Kuznetsov BB, Kostrikina NA, Chernyh NA, Bonch-Osmolovskaya EA (1999) Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478.  https://doi.org/10.1099/00207713-49-4-1471 CrossRefPubMedGoogle Scholar
  149. Slobodkin AI, Reysenbach AL, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA (2012) Thermosulfurimonas dismutans gen. nov., sp nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evolut Micr 62:2565–2571.  https://doi.org/10.1099/ijs.0.034397-0 CrossRefGoogle Scholar
  150. Slobodkina GB, Panteleeva AN, Sokolova TG, Bonch-Osmolovskaya EA, Slobodkin AI (2012) Carboxydocella manganica sp. nov., a thermophilic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium from a Kamchatka hot spring. Int J Syst Evolut Microbiol 62:890–894.  https://doi.org/10.1099/ijs.0.027623-0 CrossRefGoogle Scholar
  151. Smith RB, Braile LW (1994) The Yellowstone hotspot. J Volcanol Geoth Res 61:121–187.  https://doi.org/10.1016/0377-0273(94)90002-7 CrossRefGoogle Scholar
  152. Sorokin DY et al (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov., and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov. sp. nov., Thioalkalivibrio nitratis sp. nov., and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evolut Microbiol 51:565–580.  https://doi.org/10.1099/00207713-51-2-565 CrossRefGoogle Scholar
  153. Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309.  https://doi.org/10.1038/305309a0 CrossRefGoogle Scholar
  154. Stetter KO, Fiala G, Huber G, Huber R, Segerer A (1990) Hyperthermophilic microorganisms. Fems Microbiol Lett 75:117–124.  https://doi.org/10.1111/j.1574-6968.1990.tb04089.x CrossRefGoogle Scholar
  155. Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35:1417–1423.  https://doi.org/10.1021/ie950558t CrossRefGoogle Scholar
  156. Steudel R, Eckert B (2003) Solid sulfur allotropes. In: Steudel R (ed) Elemental sulfur and sulfur-rich compounds I, vol 230. Springer, Berlin, pp 1–79CrossRefGoogle Scholar
  157. Surkov AV, Böttcher ME, Kuever J (2012) Sulphur isotope fractionation during the reduction of elemental sulphur and thiosulphate by Dethiosulfovibrio spp Isotopes. Environ Health Stud 48:65–75.  https://doi.org/10.1080/10256016.2011.626525 CrossRefGoogle Scholar
  158. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotropic anaerobic. Bacteria Bacteriol Rev 41:100–180PubMedGoogle Scholar
  159. Trouwborst RE, Johnston A, Koch G, Luther GW, Pierson BK (2007) Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: implications for precambrian Fe(II) oxidation. Geochim Cosmochim Acta 71:4629–4643.  https://doi.org/10.1016/j.gca.2007.07.018 CrossRefGoogle Scholar
  160. Truesdell AH, Fournier RO (1976) Conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming. US Geological SurveyGoogle Scholar
  161. Urschel MR, Kubo MD, Hoehler TM, Peters JW, Boyd ES (2015) Carbon source preference in chemosynthetic hot spring communities. Appl Environ Microbiol 81:3834–3847.  https://doi.org/10.1128/Aem.00511-15 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Urschel MR, Hamilton TL, Roden EE, Boyd ES (2016) Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote. FEMS Microbiol Ecol 92:fiw069.  https://doi.org/10.1093/femsec/fiw069 CrossRefPubMedGoogle Scholar
  163. Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton. West Aust Earth Sci Rev 74:197–240.  https://doi.org/10.1016/j.earscirev.2005.09.005 CrossRefGoogle Scholar
  164. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67.  https://doi.org/10.1038/25720 CrossRefPubMedGoogle Scholar
  165. Vasconcelos C, Mckenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low-temperatures. Nature 377:220–222.  https://doi.org/10.1038/377220a0 CrossRefGoogle Scholar
  166. von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623.  https://doi.org/10.1128/Aem.01387-07 CrossRefGoogle Scholar
  167. Wachtershauser G (1988) Pyrite formation, the 1st energy-source for life—a hypothesis. Syst Appl Microbiol 10:207–210.  https://doi.org/10.1016/S0723-2020(88)80001-8 CrossRefGoogle Scholar
  168. Wachtershauser G (1992) Groundworks for an evolutionary biochemistry—the iron sulfur world. Prog Biophys Mol Biol 58:85–201.  https://doi.org/10.1016/0079-6107(92)90022-X CrossRefPubMedGoogle Scholar
  169. Wachtershauser G, Philos (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B 361:1787–1806.  https://doi.org/10.1098/rstb.2006.1904 CrossRefGoogle Scholar
  170. Wade ML, Agresti DG, Wdowiak TJ, Armendarez LP, Farmer JD (1999) A Mossbauer investigation of iron-rich terrestrial hydrothermal vent systems: lessons for Mars exploration. J Geophys Res Planet 104:8489–8507.  https://doi.org/10.1029/1998je900049 CrossRefGoogle Scholar
  171. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764.  https://doi.org/10.1038/nrmicro1490 CrossRefPubMedGoogle Scholar
  172. White DE, Muffler LJP, Truesdell AH (1971) Vapor-dominated hydrothermal systems compared with hot-water systems. Econ Geol 66:75–97.  https://doi.org/10.2113/gsecongeo.66.1.75 CrossRefGoogle Scholar
  173. White DE, Hutchinson RA, Keith TE (1988) Geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming US Geol Surv, Prof Pap;(United States) 75Google Scholar
  174. Wu LL, Brucker RP, Beard BL, Roden EE, Johnson CM (2013) Iron isotope characteristics of hot Springs at Chocolate Pots Yellowstone National Park. Astrobiology 13:1091–1101.  https://doi.org/10.1089/ast.2013.0996 CrossRefPubMedGoogle Scholar
  175. Wu CH, Schut GJ, Poole FL, Haja DK, Adams MWW (2018) Characterization of membrane-bound sulfane reductase: a missing link in the evolution of modern day respiratory complexes. J Biol Chem 293:16687–16696.  https://doi.org/10.1074/jbc.RA118.005092 CrossRefPubMedGoogle Scholar
  176. Xu Y, Schoonen MAA (1995) The stability of thiosulfate in the presence of pyrite in low-temperature aqueous-solutions. Geochim Cosmochim Acta 59:4605–4622.  https://doi.org/10.1016/0016-7037(95)00331-2 CrossRefGoogle Scholar
  177. Xu Y, Schoonen MAA, Nordstrom DK, Cunningham KM, Ball JW (1998) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters. Geochim Cosmochim Acta 62:3729–3743.  https://doi.org/10.1016/S0016-7037(98)00269-5 CrossRefGoogle Scholar
  178. Yoshida N, Nakasato M, Ohmura N, Ando A, Saiki H, Ishii M, Igarashi Y (2006) Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411.  https://doi.org/10.1007/s00284-006-0151-1 CrossRefPubMedGoogle Scholar
  179. Zerkle AL, Farquhar J, Johnston DT, Cox RP, Canfield DE (2009) Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim Cosmochim Acta 73:291–306.  https://doi.org/10.1016/j.gca.2008.10.027 CrossRefGoogle Scholar
  180. Zhang JZ, Millero FJ (1993) The Products from the oxidation of H2S in seawater. Geochim Cosmochim Acta 57:1705–1718.  https://doi.org/10.1016/0016-7037(93)90108-9 CrossRefGoogle Scholar
  181. Zhang FF, Xu HF, Konishi H, Kemp JM, Roden EE, Shen ZZ (2012) Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite. Geochim Cosmochim Acta 97:148–165.  https://doi.org/10.1016/j.gca.2012.09.008 CrossRefGoogle Scholar
  182. Zhang FF, Xu HF, Shelobolina ES, Konishi H, Converse B, Shen ZZ, Roden EE (2015) The catalytic effect of bound extracellular polymeric substances excreted by anaerobic microorganisms on Ca-Mg carbonate precipitation: Implications for the “dolomite problem”. Am Miner 100:483–494.  https://doi.org/10.2138/am-2015-4999 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyMontana State UniversityBozemanUSA

Personalised recommendations