Advertisement

Galactomannan degradation by thermophilic enzymes: a hot topic for biotechnological applications

  • Martina Aulitto
  • Salvatore Fusco
  • Danila Limauro
  • Gabriella Fiorentino
  • Simonetta Bartolucci
  • Patrizia ContursiEmail author
Review
  • 62 Downloads

Abstract

Extremophilic microorganisms are valuable sources of enzymes for various industrial applications. In fact, given their optimal catalytic activity and operational stability under harsh physical and chemical conditions, they represent a suitable alternative to their mesophilic counterparts. For instance, extremophilic enzymes are important to foster the switch from fossil-based to lignocellulose-based industrial processes. Indeed, more stable enzymes are needed, because the conversion of the lignocellulosic biomass to a wide palette of value-added products requires extreme chemo-physical pre-treatments. Galactomannans are part of the hemicellulose fraction in lignocellulosic biomass. They are heteropolymers constituted by a β-1,4-linked mannan backbone substituted with side chains of α-1,6-linked galactose residues. Therefore, the joint action of different hydrolytic enzymes (i.e. β-mannanase, β-mannosidase and α-galactosidase) is needed to accomplish their complete hydrolysis. So far, numerous galactomannan-degrading enzymes have been isolated and characterized from extremophilic microorganisms. Besides applications in biorefinery, these biocatalysts are also useful to improve the quality (i.e. digestibility and prebiotic properties) of food and feed as well as in paper industries to aid the pulp bleaching process. In this review, an overview about the structure, function and applications of galactomannans is provided. Moreover, a survey of (hyper)-thermophilic galactomannans-degrading enzymes, mainly characterized in the last decade, has been carried out. These extremozymes are described in the light of their biotechnological application in industrial processes requiring harsh conditions.

Graphical abstract

Keywords

Thermophiles Galactomannans Galactomannan-degrading enzymes β-mannanase β-mannosidase α-galactosidase 

Notes

Acknowledgements

We thank University of Naples Federico II and Compagnia di San Paolo for the financial support in the frame of the Programme STAR [Grant number, 16-CSP-UNINA-007]. The funding bodies had no influence on the content of the manuscript.

References

  1. Antonucci I, Gallo G, Limauro D et al (2018) Characterization of a promiscuous cadmium and arsenic resistance mechanism in Thermus thermophilus HB27 and potential application of a novel bioreporter system. Microb Cell Fact 17:78.  https://doi.org/10.1186/s12934-018-0918-7 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aulitto M, Fusco S, Bartolucci S et al (2017a) Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate. Biotechnol Biofuels 10:210. doi. https://doi.org/10.1186/s13068-017-0896-8 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aulitto M, Fusco S, Fiorentino G et al (2017b) Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an alpha-galactosidase. Microb Cell Fact 16:28.  https://doi.org/10.1186/s12934-017-0638-4 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aulitto M, Fusco FA, Fiorentino G et al (2018) A thermophilic enzymatic cocktail for galactomannans degradation. Enzyme Microb Technol 111:7–11.  https://doi.org/10.1016/j.enzmictec.2017.12.008 CrossRefPubMedGoogle Scholar
  5. Bartolucci S, Contursi P, Fiorentino G et al (2013) Responding to toxic compounds: a genomic and functional overview of Archaea. Front Biosci 18:165–189CrossRefGoogle Scholar
  6. Bauer MW, Bylina EJ, Swanson RV et al (1996) Comparison of a β-Glucosidase and a β-Mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus purification, characterization, gene cloning, and sequence analysis. J Biol Chem 271:23749–23755CrossRefGoogle Scholar
  7. Béki E, Nagy I, Vanderleyden J et al (2003) Cloning and heterologous expression of α-D-Mannosidase (EC 3.2.1.25)-encoding gene from Thermobifida fusca TM51. Appl Environ Microbiol 69:1944–1952.  https://doi.org/10.1128/aem.69.4.1944-1952.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blanchard JE, Withers SG (2001) Rapid screening of the aglycone specificity of glycosidases: applications to enzymatic synthesis of oligosaccharides. Chem Biol 8:627–633.  https://doi.org/10.1016/S1074-5521(01)00038-2 CrossRefPubMedGoogle Scholar
  9. Brouns SJ, Smits N, Wu H et al (2006) Identification of a novel alpha-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 188:2392–2399.  https://doi.org/10.1128/JB.188.7.2392-2399.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brunecky R, Hobdey SE, Taylor LE 2nd et al (2014) High temperature pre-digestion of corn stover biomass for improved product yields. Biotechnol Biofuels 7:170.  https://doi.org/10.1186/s13068-014-0170-2 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cao Y, Yang P, Shi P et al (2007) Purification and characterization of a novel protease-resistant α-galactosidase from Rhizopus sp. F78 ACCC 30795. Enzyme Microb Technol 41:835–841.  https://doi.org/10.1016/j.enzmictec.2007.07.005 CrossRefGoogle Scholar
  12. Carette N, Engelkamp H, Akpa E et al (2007) A virus-based biocatalyst. Nat Nanotechnol 2:226–229.  https://doi.org/10.1038/nnano.2007.76 CrossRefPubMedGoogle Scholar
  13. Ceballos RM, Marceau CD, Marceau JO et al (2012) Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: implications for evolution in extreme environments. Front Microbiol 3:295. doi. https://doi.org/10.3389/fmicb.2012.00295 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chauhan PS, Gupta N (2017) Insight into microbial mannosidases: a review. Crit Rev Biotechnol 37:190–201.  https://doi.org/10.3109/07388551.2015.1128878 CrossRefPubMedGoogle Scholar
  15. Cheng L, Duan S, Feng X et al (2016) Purification and characterization of a thermostable beta-mannanase from Bacillus subtilis BE-91: potential application in inflammatory diseases. Biomed Res Int 2016:6380147.  https://doi.org/10.1155/2016/6380147 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Contursi P, Pisani FM, Grigoriev A, Cannio R, Bartolucci S, Rossi M (2004) Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus. Extremophiles 8(5):385–391CrossRefGoogle Scholar
  17. Contursi P, Cannio R, Prato S, She Q, Rossi M, Bartolucci S (2007) Transcriptional analysis of the genetic element pSSVx: differential and temporal regulation of gene expression reveals correlation between transcription and replication. J Bacteriol 189(17):6339–6350CrossRefGoogle Scholar
  18. Comfort DA, Bobrov KS, Ivanen DR et al (2007) Biochemical analysis of Thermotoga maritima GH36 α-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. Biochem 46:3319–3330.  https://doi.org/10.1021/bi061521n CrossRefGoogle Scholar
  19. Contursi P, Cannio R, She Q (2010) Transcription termination in the plasmid/virus hybrid pSSVx from Sulfolobus islandicus. Extremophiles 14:453–463.  https://doi.org/10.1007/s00792-010-0325-4 CrossRefPubMedGoogle Scholar
  20. Contursi P, Fusco S, Limauro D et al (2013) Host and viral transcriptional regulators in Sulfolobus: an overview. Extremophiles 17:881–895.  https://doi.org/10.1007/s00792-013-0586-9 CrossRefPubMedGoogle Scholar
  21. Contursi P, Farina B, Pirone L et al (2014a) Structural and functional studies of Stf76 from the Sulfolobus islandicus plasmid–virus pSSVx: a novel peculiar member of the winged helix–turn–helix transcription factor family. Nucleic Acids Res 42:5993–6011.  https://doi.org/10.1093/nar/gku215 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Contursi P, Fusco S, Cannio R et al (2014b) Molecular biology of fuselloviruses and their satellites. Extremophiles 18:473–489.  https://doi.org/10.1007/s00792-014-0634-0 CrossRefPubMedGoogle Scholar
  23. Cragg SM, Beckham GT, Bruce NC et al (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119.  https://doi.org/10.1016/j.cbpa.2015.10.018 CrossRefPubMedGoogle Scholar
  24. Dhawan S, Kaur J (2007) Microbial mannanases: an overview of production and applications. Crit Rev Biotechnol 27:197–216.  https://doi.org/10.1080/07388550701775919 CrossRefPubMedGoogle Scholar
  25. Dias FM, Vincent F, Pell G, Prates JA, Centeno MS, Tailford LE, Ferreira LM, Fontes CM, Davies GJ, Gilbert HJ (2004) Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. J Biol Chem 279(24):25517–25526CrossRefGoogle Scholar
  26. Do BC, Dang TT, Berrin JG et al (2009) Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01. Microb Cell Fact 8:59.  https://doi.org/10.1186/1475-2859-8-59 CrossRefPubMedGoogle Scholar
  27. Duffaud GD, McCutchen CM, Leduc P et al (1997) Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068. Appl Environ Microbiol 63:169–177PubMedPubMedCentralGoogle Scholar
  28. Elleuche S, Schäfers C, Blank S et al (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119.  https://doi.org/10.1016/j.mib.2015.05.011 CrossRefPubMedGoogle Scholar
  29. Fiorentino G, Del Giudice I, Bartolucci S et al (2011) Identification and physicochemical characterization of BldR2 from Sulfolobus solfataricus, a novel archaeal member of the MarR transcription factor family. Biochemistry 50:6607–6621.  https://doi.org/10.1021/bi200187j CrossRefPubMedGoogle Scholar
  30. Fliedrová B, Gerstorferová D, Křen V et al (2012) Production of Aspergillus niger β-mannosidase in Pichia pastoris. Prot Expr Purif 85:159–164.  https://doi.org/10.1016/j.pep.2012.07.012 CrossRefGoogle Scholar
  31. Fusco S, She Q, Bartolucci S et al (2013) Tlys, a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes. J Virol 87:5926–5936.  https://doi.org/10.1128/JVI.00458-13 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fusco S, Aulitto M, Bartolucci S et al (2015a) A standardized protocol for the UV induction of Sulfolobus spindle-shaped virus 1. Extremophiles 19:539–546.  https://doi.org/10.1007/s00792-014-0717-y CrossRefPubMedGoogle Scholar
  33. Fusco S, Liguori R, Limauro D et al (2015b) Transcriptome analysis of Sulfolobus solfataricus infected with two related fuselloviruses reveals novel insights into the regulation of CRISPR-Cas system. Biochimie 118:322–332.  https://doi.org/10.1016/j.biochi.2015.04.006 CrossRefPubMedGoogle Scholar
  34. Fusco S, She Q, Fiorentino G et al (2015c) Unravelling the role of the F55 regulator in the transition from lysogeny to UV induction of Sulfolobus spindle-shaped virus 1. J Virol 89:6453–6461.  https://doi.org/10.1128/JVI.00363-15 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fusco FA, Ronca R, Fiorentino G et al (2018) Biochemical characterization of a thermostable endomannanase/endoglucanase from Dictyoglomus turgidum. Extremophiles 22:131–140.  https://doi.org/10.1007/s00792-017-0983-6 CrossRefPubMedGoogle Scholar
  36. Gaglione R, Pirone L, Farina B et al (2017) Insights into the anticancer properties of the first antimicrobial peptide from Archaea. Biochim Biophys Acta Gen Subj 1861:2155–2164.  https://doi.org/10.1016/j.bbagen.2017.06.009 CrossRefPubMedGoogle Scholar
  37. Ghazi S, Rooke J, Galbraith H (2003) Improvement of the nutritive value of soybean meal by protease and a-galactosidase treatment in broiler cockerels and broiler chicks. Br Poult Sci 44:410–418CrossRefGoogle Scholar
  38. Ghosh A, Luis AS, Bras JL et al (2013) Thermostable recombinant beta-(1–>4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production. J Agric Food Chem 61:12333–12344.  https://doi.org/10.1021/jf403111g CrossRefPubMedGoogle Scholar
  39. Gomes J, Terler K, Kratzer R et al (2007) Production of thermostable β-mannosidase by a strain of Thermoascus aurantiacus: isolation, partial purification and characterization of the enzyme. Enzyme Microb Technol 40:969–975.  https://doi.org/10.1016/j.enzmictec.2006.08.011 CrossRefGoogle Scholar
  40. Gote MM, Khan MI, Gokhale DV et al (2006) Purification, characterization and substrate specificity of thermostable α-galactosidase from Bacillus stearothermophilus (NCIM-5146). Process Biochem 41:1311–1317.  https://doi.org/10.1016/j.procbio.2006.01.003 CrossRefGoogle Scholar
  41. Hakamada Y, Ohkubo Y, Ohashi S (2014) Purification and characterization of beta-mannanase from Reinekea sp. KIT-YO10 with transglycosylation activity. Biosci Biotechnol Biochem 78:722–728.  https://doi.org/10.1080/09168451.2014.895658 CrossRefPubMedGoogle Scholar
  42. Harnpicharnchai P, Pinngoen W, Teanngam W et al (2016) Production of high activity Aspergillus niger BCC4525 β-mannanase in Pichia pastoris and its application for mannooligosaccharides production from biomass hydrolysis. Biosci Biotechnol Biochem 80:2298–2305.  https://doi.org/10.1080/09168451.2016.1230003 CrossRefPubMedGoogle Scholar
  43. Horikoshi K, Antranikian G, Bull AT et al (2010) Extremophiles handbook. Springer, Tokyo. Print ISBN 978-4-431-53897-4. eReference ISBN 978-4-431-53898-1Google Scholar
  44. Hu K, Li CX, Pan J, Ni Y, Zhang XY, Xu JH (2014) Performance of a new thermostable mannanase in breaking guar-based fracturing fluids at high temperatures with little premature degradation. Appl Biochem Biotechnol 172(3):1215–1226CrossRefGoogle Scholar
  45. Jiang Z, Wei Y, Li D et al (2006) High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydr Polym 66:88–96.  https://doi.org/10.1016/j.carbpol.2006.02.030 CrossRefGoogle Scholar
  46. Karnaouri A, Matsakas L, Topakas E et al (2016) Development of thermophilic tailor-made enzyme mixtures for the bioconversion of agricultural and forest residues. Front Microbiol 7:177.  https://doi.org/10.3389/fmicb.2016.00177 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Katrolia P, Jia H, Yan Q et al (2012) Characterization of a protease-resistant alpha-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. Bioresour Technol 110:578–586.  https://doi.org/10.1016/j.biortech.2012.01.144 CrossRefPubMedGoogle Scholar
  48. Katrolia P, Yan Q, Zhang P et al (2013) Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-beta-mannanase from Rhizomucor miehei. J Agric Food Chem 61:394–401.  https://doi.org/10.1021/jf303319h CrossRefPubMedGoogle Scholar
  49. Katsimpouras C, Dimarogona M, Petropoulos P et al (2016) A thermostable GH26 endo-β-mannanase from Myceliophthora thermophila capable of enhancing lignocellulose degradation. App Microbiol Biotechnol 100:8385–8397.  https://doi.org/10.1007/s00253-016-7609-2 CrossRefGoogle Scholar
  50. Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29:26–31. doi. https://doi.org/10.1016/j.cbpa.2015.07.010 CrossRefPubMedGoogle Scholar
  51. Kumagai Y, Usuki H, Yamamoto Y et al (2011) Characterization of calcium ion sensitive region for beta-mannanase from Streptomyces thermolilacinus. Biochim Biophys Acta 1814:1127–1133.  https://doi.org/10.1016/j.bbapap.2011.04.017 CrossRefPubMedGoogle Scholar
  52. Lee A, Choi KH, Yoon D et al (2017) Characterization of a thermostable glycoside hydrolase family 36 alpha-galactosidase from Caldicellulosiruptor bescii. J Biosci Bioeng 124:289–295.  https://doi.org/10.1016/j.jbiosc.2017.04.011 CrossRefPubMedGoogle Scholar
  53. Liao H, Li S, Zheng H et al (2014) A new acidophilic thermostable endo-1,4-beta-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris. BMC Biotechnol 14:90.  https://doi.org/10.1186/s12896-014-0090-z CrossRefPubMedPubMedCentralGoogle Scholar
  54. Limauro D, De Simone G, Pirone L et al (2014) Sulfolobus solfataricus thiol redox puzzle: characterization of an atypical protein disulfide oxidoreductase. Extremophiles 18:219–228.  https://doi.org/10.1007/s00792-013-0607-8 CrossRefPubMedGoogle Scholar
  55. Luo H, Wang Y, Wang H et al (2009) A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 82:453–461.  https://doi.org/10.1007/s00253-008-1766-x CrossRefPubMedGoogle Scholar
  56. Luo H, Wang K, Huang H et al (2012) Gene cloning, expression, and biochemical characterization of an alkali-tolerant beta-mannanase from Humicola insolens Y1. J Ind Microbiol Biotechnol 39:547–555.  https://doi.org/10.1007/s10295-011-1067-8 CrossRefPubMedGoogle Scholar
  57. Luo Z, Miao J, Li G, Du Y, Yu X (2017) A recombinant highly thermostable β-mannanase (ReTMan26) from thermophilic bacillussubtilis (TBS2) expressed in Pichia pastoris and its pH and temperature stability. Appl Biochem Biotechnol 182(4):1259–1275CrossRefGoogle Scholar
  58. Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interactions between beta-mannanase, beta-mannosidase and alpha-galactosidase. World J Microbiol Biotechnol 31:1167–1175.  https://doi.org/10.1007/s11274-015-1878-2 CrossRefPubMedGoogle Scholar
  59. Merceron R, Foucault M, Haser R et al (2012) The molecular mechanism of thermostable alpha-galactosidases AgaA and AgaB explained by X-ray crystallography and mutational studies. J Biol Chem 287:39642–39652.  https://doi.org/10.1074/jbc.M112.394114 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178.  https://doi.org/10.1007/s00253-008-1423-4 CrossRefPubMedGoogle Scholar
  61. Moreno R, Haro A, Castellanos A et al (2005) High-level overproduction of His-tagged Tth DNA polymerase in Thermus thermophilus. Appl Environ Microbiol 71:591–593.  https://doi.org/10.1128/AEM.71.1.591-593.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Naganagouda K, Salimath P, Mulimani V (2009) Purification and characterization of endo-β-1, 4 mannanase from Aspergillus niger gr for application in food processing industry. J Microbiol Biotechnol 19:1184–1190PubMedGoogle Scholar
  63. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611.  https://doi.org/10.3390/biom3030597 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Notomista E, Falanga A, Fusco S et al (2015) The identification of a novel Sulfolobus islandicus CAMP-like peptide points to archaeal microorganisms as cell factories for the production of antimicrobial molecules. Microb Cell Fact 14:126.  https://doi.org/10.1186/s12934-015-0302-9 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Parker KN, Chhabra SR, Lam D et al (2001) Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotech bioeng 75:322–333. doi. https://doi.org/10.1002/bit.10020 CrossRefGoogle Scholar
  66. Patil A, Praveen Kumar S, Mulimani VH et al (2010) α-galactosidase from Bacillus megaterium VHM1 and its application in removal of flatulence-causing factors from soymilk. J Microbiol Biotechnol 20:1546–1554CrossRefGoogle Scholar
  67. Pauly M, Gille S, Liu L et al (2013) Hemicellulose biosynthesis. Planta 238:627–642.  https://doi.org/10.1007/s00425-013-1921-1 CrossRefPubMedGoogle Scholar
  68. Pedone E, Fiorentino G, Pirone L et al (2014) Functional and structural characterization of protein disulfide oxidoreductase from Thermus thermophilus HB27. Extremophiles 18:723–731.  https://doi.org/10.1007/s00792-014-0652-y CrossRefPubMedGoogle Scholar
  69. Pradeep GC, Cho SS, Choi YH et al (2016) An extremely alkaline mannanase from Streptomyces sp. CS428 hydrolyzes galactomannan producing series of mannooligosaccharides. World J Microbiol Biotechnol 32:84.  https://doi.org/10.1007/s11274-016-2040-5 CrossRefGoogle Scholar
  70. Prajapati VD, Jani GK, Moradiya NG et al (2013) Galactomannan: a versatile biodegradable seed polysaccharide. Int J Biol Macromol 60:83–92.  https://doi.org/10.1016/j.ijbiomac.2013.05.017 CrossRefPubMedGoogle Scholar
  71. Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67:565–585.  https://doi.org/10.1146/annurev-micro-092412-155633 CrossRefPubMedGoogle Scholar
  72. Prato S, Cannio R, Klenk H-P et al (2006) pIT3, a cryptic plasmid isolated from the hyperthermophilic crenarchaeon Sulfolobus solfataricus IT3. Plasmid 56:35–45.  https://doi.org/10.1016/j.plasmid.2006.02.002 CrossRefPubMedGoogle Scholar
  73. Prato S, Vitale RM, Contursi P et al (2008) Molecular modeling and functional characterization of the monomeric primase–polymerase domain from the Sulfolobus solfataricus plasmid pIT3. FEBS J 275:4389–4402.  https://doi.org/10.1111/j.1742-4658.2008.06585.x CrossRefPubMedGoogle Scholar
  74. Quemin ER, Pietilä MK, Oksanen HM et al (2015) Sulfolobus spindle-shaped virus 1 contains glycosylated capsid proteins, a cellular chromatin protein, and host-derived lipids. J Virol 89:11681–11691.  https://doi.org/10.1128/JVI.02270-15 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Regmi S, G CP, Choi YH et al (2016) A multi-tolerant low molecular weight mannanase from Bacillus sp. CSB39 and its compatibility as an industrial biocatalyst. Enzyme Microb Technol 92:76–85.  https://doi.org/10.1016/j.enzmictec.2016.06.018 CrossRefPubMedGoogle Scholar
  76. Roscetto E, Contursi P, Vollaro A, Fusco S, Notomista E, Catania MR (2018) Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Sci Rep 8(1):17570Google Scholar
  77. Sampietro D, Quiroga E, Sgariglia M et al (2012) A thermostable α-galactosidase from Lenzites elegans (Spreng.) ex Pat. MB445947: purification and properties. Antonie Van Leeuwenhoek 102:257–267.  https://doi.org/10.1007/s10482-012-9734-y CrossRefPubMedGoogle Scholar
  78. Sarmiento F, Peralta R, Blamey JM (2015) Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol 3:148.  https://doi.org/10.3389/fbioe.2015.00148 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Schroder C, Janzer VA, Schirrmacher G et al (2017) Characterization of two novel heat-active alpha-galactosidases from thermophilic bacteria. Extremophiles 21:85–94.  https://doi.org/10.1007/s00792-016-0885-z CrossRefPubMedGoogle Scholar
  80. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235.  https://doi.org/10.1039/c3cs60075k CrossRefPubMedGoogle Scholar
  81. Shi P, Yao G, Cao Y et al (2011) Cloning and characterization of a new β-mannosidase from Streptomyces sp. S27. Enzyme Microb Technol 49:277–283.  https://doi.org/10.1016/j.enzmictec.2011.06.003 CrossRefPubMedGoogle Scholar
  82. Shi H, Huang Y, Zhang Y et al (2013) High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli. BMC Biotechnol 13:83.  https://doi.org/10.1186/1472-6750-13-83 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Shimizu M, Kaneko Y, Ishihara S et al (2015) Novel β-1, 4-mannanase belonging to a new glycoside hydrolase family in Aspergillus nidulans. J Biol Chem 46:27914–27927.  https://doi.org/10.1074/jbc.M115.661645 CrossRefGoogle Scholar
  84. Somerville C, Youngs H, Taylor C et al (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792.  https://doi.org/10.1126/science.1189268 CrossRefPubMedGoogle Scholar
  85. Songsiriritthigul C, Buranabanyat B, Haltrich D et al (2010) Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis. in Escherichia coli. Microb Cell Fact 11:9:20.  https://doi.org/10.1186/1475-2859-9-20 CrossRefGoogle Scholar
  86. Steinmetz NF, Bize A, Findlay KC et al (2008) Site-specific and spatially controlled addressability of a new viral nanobuilding block: Sulfolobus islandicus rod-shaped virus 2. Adv Funct Mater 18:3478–3486.  https://doi.org/10.1002/adfm.200800711 CrossRefGoogle Scholar
  87. Summpunn P, Chaijan S, Isarangkul D et al (2011) Characterization, gene cloning, and heterologous expression of beta-mannanase from a thermophilic Bacillus subtilis. J Microbiol 49:86–93.  https://doi.org/10.1007/s12275-011-0357-1 CrossRefPubMedGoogle Scholar
  88. Tailford LE, Money VA, Smith NL et al (2007) Mannose foraging by Bacteroides thetaiotaomicron: structure and specificity of the beta-mannosidase, BtMan2A. J Biol Chem 282:11291–11299.  https://doi.org/10.1074/jbc.M610964200 CrossRefPubMedGoogle Scholar
  89. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9.  https://doi.org/10.1186/1475-2859-6-9 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Vijayalaxmi S, Prakash P, Jayalakshmi SK et al (2013) Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl Biochem Biotechnol 171:382–395.  https://doi.org/10.1007/s12010-013-0333-9 CrossRefPubMedGoogle Scholar
  91. Wang H, Shi P, Luo H et al (2014) A thermophilic alpha-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. Bioresour Technol 153:361–364.  https://doi.org/10.1016/j.biortech.2013.11.078 CrossRefPubMedGoogle Scholar
  92. Wang C, Luo H, Niu C et al (2015) Biochemical characterization of a thermophilic beta-mannanase from Talaromyces leycettanus JCM12802 with high specific activity. Appl Microbiol Biotechnol 99:1217–1228.  https://doi.org/10.1007/s00253-014-5979-x CrossRefPubMedGoogle Scholar
  93. Wang C, Wang H, Ma R et al (2016) Biochemical characterization of a novel thermophilic alpha-galactosidase from Talaromyces leycettanus JCM12802 with significant transglycosylation activity. J Biosci Bioeng 121:7–12.  https://doi.org/10.1016/j.jbiosc.2015.04.023 CrossRefPubMedGoogle Scholar
  94. Yang D, Tian G, Du F et al (2015a) A Fungal Alpha-Galactosidase from Pseudobalsamia microspora capable of degrading raffinose family oligosaccharides. Appl Biochem Biotechnol 176:2157–2169.  https://doi.org/10.1007/s12010-015-1705-0 CrossRefPubMedGoogle Scholar
  95. Yang H, Shi P, Lu H et al (2015b) A thermophilic beta-mannanase from Neosartorya fischeri P1 with broad pH stability and significant hydrolysis ability of various mannan polymers. Food Chem 173:283–289.  https://doi.org/10.1016/j.foodchem.2014.10.022 CrossRefPubMedGoogle Scholar
  96. Yu S, Li Z, Wang Y et al (2015) High-level expression and characterization of a thermophilic beta-mannanase from Aspergillus niger in Pichia pastoris. Biotechnol Lett 37:1853–1859.  https://doi.org/10.1007/s10529-015-1848-7 CrossRefPubMedGoogle Scholar
  97. Zang H, Xie S, Wu H et al (2015) A novel thermostable GH5_7 beta-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production. Enzyme Microb Technol 78:1–9.  https://doi.org/10.1016/j.enzmictec.2015.06.007 CrossRefPubMedGoogle Scholar
  98. Zhang M, Jiang Z, Li L et al (2009) Biochemical characterization of a recombinant thermostable β-mannosidase from Thermotoga maritima with transglycosidase activity. J Mol Catal B 60:119–124.  https://doi.org/10.1016/j.molcatb.2009.04.005 CrossRefGoogle Scholar
  99. Zhao H, Lu L, Xiao M et al (2008) Cloning and characterization of a novel alpha-galactosidase from Bifidobacterium breve 203 capable of synthesizing Gal-alpha-1,4 linkage. FEMS Microbiol Lett 285:278–283.  https://doi.org/10.1111/j.1574-6968.2008.01246.x CrossRefPubMedGoogle Scholar
  100. Zhao R, Zhao R, Tu Y et al (2018) A novel alpha-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity. PLoS ONE 13:e0197067.  https://doi.org/10.1371/journal.pone.0197067 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of Naples Federico IINaplesItaly

Personalised recommendations