Advertisement

Global insight into the distribution of velvet-like B protein in Cochliobolus species and implication in pathogenicity and fungicide resistance

  • Louis Bengyella
Review
  • 33 Downloads

Abstract

The Cochliobolus genus consist of over 55 species among which the 5 most devastating are Cochliobolus carbonum, Cochliobolus heterostrophus, Cochliobolus miyabeanus, Crocus sativus and Cochliobolus lunatus causing damages in sorghum, wheat, rice, maize, cassava and soybean estimated at over 10 billion USD per annum worldwide. The dynamic pathogenicity of Cochliobolus species and the plethora of infected hosts is determined by the evolution of virulence determinants such as the velvet-like B protein (VelB). Nonetheless, the knowledge on the distribution of Cochliobolus VelB and its implication in pathogenicity and fungicide resistance are often lacking. By scanning through the annotated genomes of C. lunatus, C. heterostrophus, C. carbonum, C. victoriae, C. sativus and C. miyabeanus, it is revealed that the numbers of ortholog VelB and cognates vary. By using the phylogenetic approach, it is established that the diversification rates among velvet-domain-containing proteins for phytopathogenic Cochliobolus species could impact differently on their oxidant and fungicide resistance potentials, ability to form appressoria-like structures and infection pegs during infection. This study provides new insights into the pathogenicity evolution of Cochliobolus species at the VelB locus which is relevant for designing effective strategies for durable management of Cochliobolus diseases.

Keywords

Virulence Cochliobolus lunatus M5HF2C-toxin Motif Phylogeny Fungicide resistance 

Notes

Acknowledgements

This research was jointly supported by the World Academy of Sciences (TWAS), Trieste, Italy, Alexander von Humbolt (AvH) foundation and the Department of Biotechnology, Government of India (DBT/TWAS PG fellowship no. 3240223450).

References

  1. Ahmed YL, Gerke J, Park HS, Bayram Ö, Neumann P, Ni M, Dickmanns A, Kim SC, Yu JH, Braus GH et al (2013) The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kB. PLoS Biol 11:e1001750CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bailey TL, Boden M, Buske FA, Frith M, Grant CE (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24CrossRefPubMedGoogle Scholar
  4. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromey S (2008)) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506CrossRefPubMedGoogle Scholar
  5. Bayram ÖS, Valerius O, Park HS, Irniger S, Gerke J, Ni M, Han KH, Yu JH, Braus GH (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet 6:e1001226CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bengyella L, Yekwa LE, Waikhom SD, Nawaz K, Iftikhar S, Motloi TS, Tambo E, Roy P (2017) Upsurge in Curvularia infections and global emerging antifungal drug resistance. Asian J Sci Res 10(4):299–307CrossRefGoogle Scholar
  7. Bengyella L, Yekwa EL, Nawaz K, Iftikhar S, Tambo E, Alisoltani A, Feto NA, Roy P (2018) Global invasive Cochliobolus species: cohort of destroyers with implications in food losses and insecurity in the twentyfirst century. Arch Microbiol 200:119–135CrossRefPubMedGoogle Scholar
  8. Brecht MO, Stiles CM, Datnoff LE (2007) Evaluation of pathogenicity of Bipolaris and Curvularia species on dwarf and ultradwarf bermudagrasses in Florida. Plant Health Prog.  https://doi.org/10.1094/PHP-2007-0119-02-RS CrossRefGoogle Scholar
  9. Chettri P, Bradshaw RE (2016) LaeA negatively regulates dothistromin production in the pine needle pathogen Dothistroma septosporum. Fungal Genet Biol 97:24–32CrossRefPubMedGoogle Scholar
  10. Dandge VS (2012) Effect of some fungicide on growth (in mm) of Curvularia lunata, Fusarium equiseti, Phoma vulgaris and Botryodiplodia theobromae. J Exp Sci 2012 3(3):19–20Google Scholar
  11. Degani O (2014) Mediation of fludioxonil fungicide activity and resistance through Cochliobolus heterostrophus G-protein and MAPK signaling pathways. Phytoparasitica 43(2):215–228CrossRefGoogle Scholar
  12. Fajemisin JM, Okuyemi O (2009) Fungicidal control of Curvularia leaf spot of maize. Int J Pest Manag 22(2):234–238Google Scholar
  13. Gao S, Liu T, Li Y, Wu Q, Fu k, Chen J (2012) Understanding resistant germplasm-induced virulence variation through analysis of proteomics and suppression subtractive hybridization in a maize pathogen Curvularia lunata. Proteomics 12:3524–3535CrossRefPubMedGoogle Scholar
  14. Gao JX, Liu T, Chen J (2014) Insertional mutagenesis and cloning of the gene required for the biosynthesis of the non-host-specific toxin in Cochliobolus lunatus that causes maize leaf spot. Phytopathology 104:332–339CrossRefPubMedGoogle Scholar
  15. Gao JX, Jing J, Liu T, Yu C-J, Li Y-Q, Chen J (2015a) Identification of proteins associated with the production of melanin and with pathogenicity in maize pathogen Curvularia lunata. Australas Plant Pathol 44:599CrossRefGoogle Scholar
  16. Gao J-X, Jing J, Yu C-J, Chen J (2015b) Construction of a high-quality yeast two-hybrid library and its application in identification of interacting proteins with Brn1 in Curvularia lunata. Plant Pathol J 31(2):108–114CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gao J-X, Yu C-J, Wang M, Sun J-N, Li Y-Q, Chen J (2017) Involvement of a velvet protein ClVelB in the regulation of vegetative differentiation, oxidative stress response, secondary metabolism, and virulence in Curvularia lunata. Sci Rep 7:46054CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ghany-Abdel TM, Shater ARM, Negm ME, Al Abboud MA, Elhussieny NI (2015) Efficacy of botanical fungicides against Curvularia lunata at molecular levels. J Plant Pathol Microbiol 6:289Google Scholar
  19. Grant CE, Bailey TL (2011) Noble WS: FIMO: Scanning for occurrences of a given motif. BMC Bioinform 27(7):1017–1018CrossRefGoogle Scholar
  20. Kim HS, Han KY, Kim KJ, Han DM, Jahng KY, Chae KS (2002) The VeA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80CrossRefPubMedGoogle Scholar
  21. Kim HJ, Han JH, Kim KS, Lee YH (2014) Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 66:33–43CrossRefPubMedGoogle Scholar
  22. Lan N, Zhang H, Hu C, Wang W, Calvo AM, Harris SD, Chen S, Li S (2014) Coordinated and distinct of velvet proteins in Fusarium verticillioides. Eukaryot Cell 13(7):909–918CrossRefPubMedPubMedCentralGoogle Scholar
  23. López-Berges MS, Hera C, Sulyok M, Schäfer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65CrossRefPubMedGoogle Scholar
  24. Louis B, Waikhom SD, Jose RC, Goyari S, Talukdar NC, Roy P (2015) Cochliobolus lunatus colonizes potato by adopting different invasion strategies on cultivars: new insights on temperature dependent virulence. Microb Pathog 87(2015):30–39CrossRefPubMedGoogle Scholar
  25. Louis B, Waikhom SD, Atadja PW (2016) Current trends in outwitting resistance development in Candida infections through photodynamic and short peptide therapies: a strategic-shift from conventional antifungal agents. Expert Rev Anti-infect Ther 14:(3):345–352CrossRefGoogle Scholar
  26. Marin-Felix Y, Senwanna C, Cheewangkoon R, Crous PW (2017) New species and records of Bipolaris and Curvularia from Thailand. Mycosphere 8(9):1556–1574CrossRefGoogle Scholar
  27. Mourão DSC, Pereira TFS, Souza DJS, Júnior AFC, Dalcin MS, Veloso RA, Leão EU, Santos GR (2017)) Essential oil of Cymbopogon citratus on the control of the Curvularia leaf spot disease on maize. Medicines 4:62CrossRefPubMedCentralGoogle Scholar
  28. Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC et al (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog 8(12):e1003037CrossRefPubMedPubMedCentralGoogle Scholar
  29. Pande KSK, Yadav JK, Dalbeer (2017) In vitro evaluation of fungicides against Bipolaris sorokiniana causing spot blotch of barley (Hordeum vulgare L.). Int J Curr Microbiol Appl Sci 6(10):4734–4739CrossRefGoogle Scholar
  30. Park HS, Lee MK, Kim SC, Yu JH (2017) The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans. PLoS ONE 12:e0177099CrossRefPubMedPubMedCentralGoogle Scholar
  31. Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rossman A, Crous PW, Hyde KD, Hawksworth DL, Aptroot A, Bezerra JL et al (2015) Recommended names for pleomorphic genera in Dothideomycetes. IMA Fungus 6:507–523CrossRefPubMedPubMedCentralGoogle Scholar
  33. Schumacher J, Pradier JM, Simon A, Traeger S, Moraga J, Collado I, Viaud M, Tudzynski B (2012) Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. PLoS ONE 7(10)Google Scholar
  34. Shi-gang G, Xuan N, Ying-ying L, Fu K-H, Chuan-jin Yu, Gao Jin-xin, Meng W, Yaqian L, Jie C (2017) Sod gene of Curvularia lunata is associated with the virulence in maize leaf. J Integr Agric 16(4):874–883CrossRefGoogle Scholar
  35. Shruti-Ojha S, Goyal M (2017) First report of biocontrol of phytopathogen Curvularia in Emblica Officinalis by plant extracts in Rajasthan. Indo Am J Pharma Res 7:580–583Google Scholar
  36. Spröte P, Brakhage AA (2007) The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol 188:69–79.CrossRefPubMedGoogle Scholar
  37. Tajima F (1993) Simple methods for testing molecular clock hypothesis. Genetics 135:599–607PubMedPubMedCentralGoogle Scholar
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evolut 30:2725–2729CrossRefGoogle Scholar
  39. Wang R, Leng Y, Shrestha S, Zhong S (2016) Coordinated and independent functions of velvet-complex genes in fungal development and virulence of the fungal cereal pathogen Cochliobolus sativus. Fungal Biol 120(8):948–960CrossRefPubMedGoogle Scholar
  40. Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf HU, Tudzynski (2010) FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994PubMedPubMedCentralGoogle Scholar
  41. Wu D, Oide S, Zhang N, Choi MY, Turgeon BG (2012) ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog 8:e1002542CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yang Q, Chen Y, Ma Z (2013) Involvement of BcVeA and BcVelB in regulating conidiation, pigmentation and virulence in Botrytis cinerea. Fungal Genet Biol 50:63–71CrossRefPubMedGoogle Scholar
  43. Zhao G, Yao Y, Qi W, Wang C, Hou L, Zeng B, Cao X (2012) Draft genome sequence of Aspergillus oryzae strain 2.042. Eukaryot Cell 11(9):1178CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Biological ControlAdvanced Biotech CooperativeBali NyongaCameroon
  2. 2.Department of BiotechnologyThe University of BurdwanBardhamanIndia
  3. 3.Tree Fruit Research and Extension Center (TFREC), College of Agricultural, Human and Natural Resource Sciences (CAHNRS)Washington State UniversityPullmanUSA

Personalised recommendations