Advertisement

Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis

  • Kun-Qiang Hong
  • Ding-Yu Liu
  • Tao Chen
  • Zhi-Wen WangEmail author
Review

Abstract

Genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used in various host cells. Its widespread adoption has been largely developed by the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR) system, which uses an easily customizable specificity RNA-guided DNA endonuclease, such as Cas9. Recently, CRISPR/Cas9 mediated genome engineering has been widely applied to model organisms, including Bacillus subtilis, enabling facile, rapid high-fidelity modification of endogenous native genes. Here, we reviewed the recent progress in B. subtilis gene editing using CRISPR/Cas9 based tools, and highlighted state-of-the-art strategies for design of CRISPR/Cas9 system. Finally, future perspectives on the use of CRISPR/Cas9 genome engineering for sequence-specific genome editing in B. subtilis are provided.

Keywords

Bacillus subtilis CRISPR/Cas9 Genome editing High-throughout 

Notes

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant Nos. NSFC-21576200, NSFC-21776209, and NSFC-21621004).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Altenbuchner J (2016) Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Appl Environ Microbiol 82(17):5421–5427.  https://doi.org/10.1128/AEM.01453-16 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bao Z, HamediRad M, Xue P, Xiao H, Tasan I, Chao R, Liang J, Zhao H (2018) Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat Biotechnol.  https://doi.org/10.1038/nbt.4132 CrossRefPubMedGoogle Scholar
  3. Brans A, Filee P, Chevigne A, Claessens A, Joris B (2004) New integrative method to generate Bacillus subtilis recombinant strains free of selection markers. Appl Environ Microbiol 70(12):7241–7250.  https://doi.org/10.1128/AEM.70.12.7241-7250.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782.  https://doi.org/10.1534/genetics.111.131433 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen PT, Jeifu S, Chao YP, Ho T, Yu SM (2010) Construction of chromosomally located T7 expression system for production of heterologous secreted proteins in Bacillus subtilis. J Agric Food Chem 58(9):5392–5399.  https://doi.org/10.1021/jf100445a CrossRefPubMedGoogle Scholar
  6. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.  https://doi.org/10.1126/science.1231143 (RNA-guided)CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607.  https://doi.org/10.1038/nature09886 CrossRefPubMedPubMedCentralGoogle Scholar
  8. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343.  https://doi.org/10.1093/nar/gkt135 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Didovyk A, Borek B, Tsimring L, Hasty J (2016) Transcriptional regulation with crispr-cas9: principles, advances, and applications. Curr Opin Biotechnol 40:177–184.  https://doi.org/10.1016/j.copbio.2016.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dijl JMV, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 12(1):3.  https://doi.org/10.1186/1475-2859-12-3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262–1267.  https://doi.org/10.1038/nbt.3026 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191.  https://doi.org/10.1038/nbt.3437 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532(7600):522.  https://doi.org/10.1038/nature17944 CrossRefPubMedGoogle Scholar
  14. Fabret C, Ehrlich SD, Noirot P (2002) A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol Microbiol 46(1):25–36.  https://doi.org/10.1046/j.1365-2958.2002.03140.x CrossRefPubMedGoogle Scholar
  15. Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Rongming L, Liang L, Zhiwen W, Zeitoun R, Alexander WG, Gil RT (2017) Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol 35:48–55.  https://doi.org/10.1038/nbt.3718 CrossRefPubMedGoogle Scholar
  16. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109(39):2579–2586.  https://doi.org/10.1073/pnas.1208507109 CrossRefGoogle Scholar
  17. Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5(1):e00928–e00913.  https://doi.org/10.1128/mBio.00928-13 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CV 3rd, Graveley BR, Terns RM, Terns MP (2012) Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45(3):292–302.  https://doi.org/10.1016/j.molcel.2011.10.023 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O (2016) Structure and engineering of Francisella novicida Cas9. Cell 164(5):950–961.  https://doi.org/10.1016/j.cell.2016.01.039 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Inacio JM, Costa C, de Sa-Nogueira I (2003) Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in Bacillus subtilis. Microbiology 149(Pt 9):2345–2355.  https://doi.org/10.1099/mic.0.26326-0 CrossRefPubMedGoogle Scholar
  21. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013a) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239.  https://doi.org/10.1038/nbt.2508 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jiang W, David B, David C, Feng Z, Marraffini LA (2013b) CRISPR-assisted editing of bacterial genomes. Nat Biotechnol 31(3):233.  https://doi.org/10.1038/nbt.2508 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179.  https://doi.org/10.1038/ncomms15179 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821.  https://doi.org/10.1126/science.1225829 CrossRefGoogle Scholar
  25. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55.  https://doi.org/10.1038/nrm3486 CrossRefPubMedGoogle Scholar
  26. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, Aryee MJ, Joung JK (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485.  https://doi.org/10.1038/nature14592 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495.  https://doi.org/10.1038/nature16526 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kumpfmuller J, Methling K, Fang L, Pfeifer BA, Lalk M, Schweder T (2016) Production of the polyketide 6-deoxyerythronolide B in the heterologous host Bacillus subtilis. Appl Microbiol Biotechnol 100(3):1209–1220.  https://doi.org/10.1007/s00253-015-6990-6 CrossRefPubMedGoogle Scholar
  29. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691.  https://doi.org/10.1038/nbt.2654 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li K, Cai D, Wang Z, He Z, Chen S (2018) Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol 84:AEM.02608–AEM.02617.  https://doi.org/10.1128/AEM.02608-17 CrossRefGoogle Scholar
  32. Liang L, Liu R, Garst AD, Lee T, Nogue VSI, Beckham GT, Gill RT (2017) CRISPR EnAbled Trackable genome engineering for isopropanol production in Escherichia coli. Metab Eng 41:1–10.  https://doi.org/10.1016/j.ymben.2017.02.009 CrossRefPubMedGoogle Scholar
  33. Liu R, Bassalo MC, Zeitoun RI, Gill RT (2015) Genome scale engineering techniques for metabolic engineering. Metab Eng 32:143 –143 54.  https://doi.org/10.1016/j.ymben.2015.09.013 CrossRefPubMedGoogle Scholar
  34. Ma M, Ye AY, Zheng W, Kong L (2013) A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res Int.  https://doi.org/10.1155/2013/270805 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826.  https://doi.org/10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42(W1):W401–W407.  https://doi.org/10.1093/nar/gku410 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123.  https://doi.org/10.1093/bioinformatics/btu743 CrossRefPubMedGoogle Scholar
  38. Oh JH, van Pijkeren JP (2014) CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42(17):e131.  https://doi.org/10.1093/nar/gku623 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389.  https://doi.org/10.1016/j.cell.2013.08.021 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rasmussen MD, Martinussen J, Defoor EMC, Poulsen GB (2006) A counter-selectable marker for Bacillus. Microb Cell Fact 5(Suppl 1):1.  https://doi.org/10.1186/1475-2859-5-S1-P82 CrossRefGoogle Scholar
  41. Sander JD, Maeder ML, Reyon D, Voytas DF, Joung JK, Dobbs D (2010) ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res 38:W462–W468.  https://doi.org/10.1093/nar/gkq319. (Web Server issue)CrossRefPubMedPubMedCentralGoogle Scholar
  42. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17.  https://doi.org/10.1139/w03-076 CrossRefGoogle Scholar
  43. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23(5):720–723.  https://doi.org/10.1038/cr.2013.46 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Shi T, Wang G, Wang Z, Fu J, Chen T, Zhao X (2013) Establishment of a markerless mutation delivery system in Bacillus subtilis stimulated by a double-strand break in the chromosome. PLoS ONE 8(11):e81370.  https://doi.org/10.1371/journal.pone.0081370 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Siksnys V, Gasiunas G (2016) Rewiring Cas9 to target new PAM sequences. Mol Cell 61(6):793–794.  https://doi.org/10.1016/j.molcel.2016.03.002 CrossRefPubMedGoogle Scholar
  46. So Y, Park SY, Park EH, Park SH, Kim EJ, Pan JG, Choi SK (2017) A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis. Front Microbiol 8:1167.  https://doi.org/10.3389/fmicb.2017.01167 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26(8):335–340.  https://doi.org/10.1016/j.tig.2010.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Strauβ A, Lahaye T (2013) Zinc fingers, tal effectors, or cas9-based dna binding proteins: what’s best for targeting desired genome loci? 6(5):1384–1387.  https://doi.org/10.1093/mp/sst075 CrossRefGoogle Scholar
  49. Thwaite JE, Baillie LWJ, Carter NM, Stephenson K, Rees M, Harwood CR, Emmerson PT (2002) Optimization of the cell wall microenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtilis. Appl Environ Microbiol 68(1):227–234.  https://doi.org/10.1128/AEM.68.1.227-234.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Van JDO, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12(7):479–492CrossRefGoogle Scholar
  51. Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, Richter C, Przybilski R, Pitman AR, Fineran PC (2013) Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9(4):e1003454.  https://doi.org/10.1371/journal.pgen.1003454 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30(14):3141.  https://doi.org/10.1093/nar/gkf433 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang Y, Li Z, Xu J, Zeng B, Ling L, You L, Chen Y, Huang Y, Tan A (2013) The CRISPR/Cas system mediates efficient genome engineering in Bombyx mori. Cell Res 23(12):1414–1416.  https://doi.org/10.1038/cr.2013.146 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Westbrook AW, Moo-Young M, Chou CP (2016) Development of a CRISPR-Cas9 Tool Kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol 82(16):4876–4895.  https://doi.org/10.1128/AEM.01159-16 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Westers L, Westers H, Quax WJ (2004a) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694(1–3):299–310CrossRefGoogle Scholar
  56. Westers L, Westers H, Quax WJ (2004b) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta Mol Cell Res 1694(3):299–310.  https://doi.org/10.1016/j.bbamcr.2004.02.011 CrossRefGoogle Scholar
  57. Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71(7):3747–3752.  https://doi.org/10.1128/AEM.71.7.3747-3752.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165(4):949–962.  https://doi.org/10.1016/j.cell.2016.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yan X, Yu HJ, Hong Q, Li SP (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis. Appl Environ Microbiol 74(17):5556–5562.  https://doi.org/10.1128/AEM.01156-08 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ye R, Kim JH, Kim BG, Szarka S, Sihota E, Wong SL (1999). High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng 62(1):87–96.  https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1%3C87::AID-BIT10%3E3.3.CO;2-9 CrossRefGoogle Scholar
  61. Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G (2013) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195(1):289–291.  https://doi.org/10.1534/genetics.113.153825 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771.  https://doi.org/10.1016/j.cell.2015.09.038 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang XZ, Yan X, Cui ZL, Hong Q, Li SP (2006) mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res 34(9):e71.  https://doi.org/10.1093/nar/gkl358 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zhang K, Duan X, Wu J (2016) Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci Rep 6:27943.  https://doi.org/10.1038/srep27943 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhang J, Zong W, Hong W, Zhang ZT, Wang Y (2018) Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 47:49–59.  https://doi.org/10.1016/j.ymben.2018.03.007 CrossRefPubMedGoogle Scholar
  66. Zobel S, Kumpfmüller J, Süssmuth RD, Schweder T (2015) Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl Microbiol Biotechnol 99(2):681–691.  https://doi.org/10.1007/s00253-014-6199-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Kun-Qiang Hong
    • 1
    • 2
    • 3
  • Ding-Yu Liu
    • 1
    • 2
    • 3
  • Tao Chen
    • 1
    • 2
    • 3
  • Zhi-Wen Wang
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Biochemical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinPeople’s Republic of China
  3. 3.SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China

Personalised recommendations