Advertisement

Diversity and characterization of cultivable oleaginous yeasts isolated from mangrove forests

  • Sineenath Kunthiphun
  • Puthita Chokreansukchai
  • Patcharaporn Hondee
  • Somboon Tanasupawat
  • Ancharida Savarajara
Original Paper
  • 108 Downloads

Abstract

A total of 198 yeasts were isolated from 140 samples collected from 7 mangrove forests in 4 provinces of Thailand, and were found to belong to 30 genera, 45 described species and at least 12 undescribed species based on their 26S rRNA (D1/D2 domain) gene sequence. The most prevalent species was Candida tropicalis, followed by Candida pseudolambica and Rhodosporidium paludigena. Lipid accumulation, as determined by Nile red staining, of the isolated yeasts revealed that 69 and 18 strains were positive and strongly positive, respectively, while quantitative analysis of the intracellular lipid accumulated in the latter indicated that 10 of these strains, Pseudozyma tsukubaensis (YWT7-2 and YWT7-3), Rhodotorula sphaerocarpa (YWW6-1 and SFL14-1SF), Saitozyma podzolica (YWT1-1, NS3-3 and NS10-2), Prototheca zopfii var. hydrocarbonea OMS6-1 and Prototheca sp. (YMTW3-1 and YMTS5-2), were oleaginous. In this study we found that under nitrogen depletion condition (155 C/N ratio) Pseudozyma tsukubaensis YWT7-2 accumulated the highest level of intracellular lipid at 32.4% (w/w, dry cell weight), with a broadly similar fatty acid composition to that in palm oil.

Keywords

Intracellular lipids Oily yeast Oleaginous yeast Pseudozyma tsukubaensis Triglyceride 

Notes

Acknowledgements

We appreciate Dr Robert D. J. Butcher for his assistance in English proofreading and valuable comments on the manuscript. We are grateful anonymous reviewers for valuable comments to improve the quality of manuscript. This research was supported by National Research University Project, Office of Higher Education Commission (WCU-58-016-EN) and the Ratchadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University.

References

  1. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227.  https://doi.org/10.1007/s00253-011-3200-z CrossRefPubMedGoogle Scholar
  2. Am-In S, Yongmanitchai W, Limtong S (2008) Kluyveromyces siamensis sp. nov., an ascomycetous yeast isolated from water in a mangrove forest in Ranong Province, Thailand. FEMS Yeast Res 8:823–828.  https://doi.org/10.1111/j.1567-1364.2008.00396.x CrossRefPubMedGoogle Scholar
  3. Am-In S, Limtong S, Yongmanitchai W, Jindamorakot S (2011) Candida andamanensis sp. nov., Candida laemsonensis sp. nov. and Candida ranongensis sp. nov., anamorphic yeast species isolated from estuarine waters in a Thai mangrove forest. Int J Syst Evol Microbiol 61:454–461.  https://doi.org/10.1099/ijs.0.022038-0 CrossRefPubMedGoogle Scholar
  4. Anamnart S, Tolstorukov I, Kaneko Y, Harashima S (1998) Fatty acid desaturation in methylotrophic yeast Hansenula polymorpha strain CBS 197 6 and unsaturated fatty acid auxotrophic mutants. J Biosci Bioeng 85(5):476–482Google Scholar
  5. Babič MN, Zupančič J, Gunde-Cimerman N, Zalar P (2017) Yeast in anthropogenic and polluted environments. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 145–170Google Scholar
  6. Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206CrossRefPubMedGoogle Scholar
  7. Boekhout T (1995) Pseudozyma tsukubaensis. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study. Elsevier, Amsterdam, p 1866Google Scholar
  8. Bonturi N, Matsakas L, Nilsson R, Christakopoulos P, Miranda EA, Berglund KA, Rova U (2015) Single cell oil producing yeasts Lipomyces starkeyi and Rhodosporidium toruloides: selection of extraction strategies and biodiesel property prediction. Energies 8:5040–5052CrossRefGoogle Scholar
  9. Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol Ecol 73:121–133PubMedGoogle Scholar
  10. Calder PC (2015) Functional roles of fatty acids and their effects on human health. JPEN 39:18S–32SCrossRefGoogle Scholar
  11. Chen Q, Zhao Q, Li J, Jian S, Ren H (2015) Mangrove succession enriches the sediment microbial community in South China. Sci Rep 6:27468.  https://doi.org/10.1038/srep27468 CrossRefGoogle Scholar
  12. Dien BS, Slininger PJ, Kurtzman CP, Moser BR, O’Bryan PJ (2016) Identification of superior lipid producing Lipomyces and Myxozyma yeasts. AIMS Environ Sci 3(1):1–20.  https://doi.org/10.3934/environsci.2016.1.1 CrossRefGoogle Scholar
  13. Dong X, Jiang W, Li C, Ma N, Xu Y, Meng X (2015) Patulin biodegradation by marine yeast Kodameae ohmeri. Food Addit Contam A 32:352–360.  https://doi.org/10.1080/19440049.2015.1007090 Google Scholar
  14. Duarte AWF, Passarini AWF, Delforno TP, Pellizzari FM, Cipro CVZ, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environ Microbiol Rep 8:874–885CrossRefGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2:1792–1797CrossRefGoogle Scholar
  16. Endoh R, Suzuki M, Benno Y, Futai K (2008) Candida kashinagacola sp. nov., C. pseudovanderkliftii sp. nov. and C. vanderkliftii sp. nov., three new yeasts from ambrosia beetle associated source. A van Leeuwenhoek 94:389–402CrossRefGoogle Scholar
  17. Endoh R, Suzuki M, Okada G, Takeuchi Y, Futai K (2011) Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus. Microb Ecol 62:106–120CrossRefPubMedGoogle Scholar
  18. Fai AEC, da Silva B, de Andrade J, Bution J, Pastore ML GM (2014) Production of prebiotic galactooligosaccharides from lactose by Pseudozyma tsukubaensis and Pichia kluyveri. Biocatal Agric Biotechnol 3:343–350Google Scholar
  19. Fell JW (1967) Distribution of yeasts in the Indian Ocean. Bull Mar Sci 17:454–470Google Scholar
  20. Fell JW (2012) Yeast in marine environments. In: Jones EBG, Pang KL (eds) Marine fungi and fungal-like microorganisms marine and freshwater botany. de Gruyter, Berlin, pp 91–102Google Scholar
  21. Fell JW, Statzell-Tallman A, Scorzetti G, Gutierrez MH (2011) Five new species of yeasts from fresh water and marine habitats in the Florida Everglades. A van Leeuwenhoek 99:533–549CrossRefGoogle Scholar
  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  23. Fukuoka T, Morita T, Konishi M, Imura T, Kitamoto D (2007) A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydr Res 343:555–560CrossRefPubMedGoogle Scholar
  24. Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the Mid-Atlantic Ridge hydrothermal fields near the Azores archipelago. Microb Ecol 50:408–417CrossRefPubMedGoogle Scholar
  25. Gairín CA, Frau JG, Hadi NH, Peiró AG (2015) Antioxidant treatment and prevention of human sperm DNA fragmentation: role in health and fertility. In: Watson RR (ed) Handbook of fertility. Academic Press, San Diego, pp 397–410CrossRefGoogle Scholar
  26. Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C (2012) Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresour Technol 111:398–403.  https://doi.org/10.1016/j.biortech.2012.02.004 CrossRefPubMedGoogle Scholar
  27. Gao ZL, Gu XH, Cheng FT, Jiang FH (2003) Effect of sea buckthorn on liver fibrosis: a clinical study. World J Gastroenterol 9:1615–1617CrossRefPubMedPubMedCentralGoogle Scholar
  28. Golubev WI, Pfeiffer I, Golubeva EW (2006) Mycocin production in Pseudozyma tsukubaensis. Mycopathologia 162: 313–316.  https://doi.org/10.1007/s11046-006-0065-2 CrossRefPubMedGoogle Scholar
  29. Griel AE, Cao YM, Bagshaw DD, Cifelli AM, Holub B, Kris-Etherton PM (2008) A macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women. J Nutr 138:761–767CrossRefPubMedGoogle Scholar
  30. Groenewald M, Boundy-Mills K, Čadež N, Endoh R, Jindamorakot S, Pohl-Albertyn C, Rosa CA, Turchetti B, Yurkov A (2017) Census of yeasts isolated from natural ecosystem and conserved in worldwide collections. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer nature, Cham, pp 62–86Google Scholar
  31. Hagler AN (2006) Yeasts as indicators of environmental quality. In: Rosa CA, Gabor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 519–536Google Scholar
  32. Hagler AN, De Oliveira RB, Mendonca-Hagler LC (1982) Yeasts in the intertidal sediments of a polluted estuary in Rio de Janeiro, Brazil. Antonie van Leeuwenhoek 48:53–56CrossRefPubMedGoogle Scholar
  33. Hagler AN, Mendonca-Hagler LC, Pagnocca FC (2017) Yeasts in aquatic ecotone habitats. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 62–86Google Scholar
  34. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98Google Scholar
  35. Hayashi N, Togawa K, Yanagisawa M, Hosogi J, Mimura D, Yamamoto Y (2003) Effect of sunlight exposure and aging on skin surface lipids and urate. Exp Dermatol 12:13–17CrossRefPubMedGoogle Scholar
  36. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169CrossRefGoogle Scholar
  37. Jeya M, Lee KM, Tiwari MK, Kim JS, Gunasekaran P, Kim SY, Kim IW, Lee JK (2009) Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol 83:225–231.  https://doi.org/10.1007/s00253-009-1871-5 CrossRefPubMedGoogle Scholar
  38. Jindamorakot S, Ninomiya S, Limtong S, Yongmanitchai W, Tuntirungkij M, Potacharoen M, Tanaka K, Kawasaki H, Nakase T (2009) Three new species of bipolar budding yeasts of the genus Hanseniaspora and its anamorph Kloeckera isolated in Thailand. FEMS Yeast Res 9(8):1327–1337CrossRefPubMedGoogle Scholar
  39. Khot M, Kamat S, Zinjarde S, Pant A, Chopade B, RaviKumar A (2012) Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Fact 11:71.  https://doi.org/10.1186/1475-2859-11-71 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364CrossRefGoogle Scholar
  41. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766CrossRefGoogle Scholar
  42. Kurtzman CP (2011) Pichia Hansen EC (1904). In Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Amsterdam, Elsevier, pp 685–708CrossRefGoogle Scholar
  43. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. A van Leeuwenhoek 73:331–371CrossRefGoogle Scholar
  44. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the Saccharomyces complex determined from multigene sequence analyses. FEMS Yeast Res 3:417–432CrossRefPubMedGoogle Scholar
  45. Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeast: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 105–106Google Scholar
  46. Lachance MA, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida Berkhout (1923). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278CrossRefGoogle Scholar
  47. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biot 80:749–756.  https://doi.org/10.1007/s00253-008-1625-9 CrossRefGoogle Scholar
  48. Limsuwatthanathamrong M, Sooksai S, Chunhabundit S, Noitung S, Ngamrojanavanich N, Petsom A (2012) Fatty acid profile and lipid composition of farm-raised and wild-caught sandworms, Perinereis nuntia, the diet for marine shrimp broodstock. Asian J Anim Sci 6(2):65–75CrossRefGoogle Scholar
  49. Limtong S, Nasanit R (2017) Phylloplane yeasts in tropical climate. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 62–86Google Scholar
  50. Limtong S, Yongmanitchai W, Kawasaki H, Seki T (2007) Candida thaimueangensis sp. nov., an anamorphic yeast species from estuarine water in a mangrove forest in Thailand. Int J Syst Evol Microbiol 57(3):650–653.  https://doi.org/10.1099/ijs.0.64698-0 CrossRefPubMedGoogle Scholar
  51. Limtong S, Youngmanitchai W, Kawasaki H, Seki T (2008) Candida phangngensis sp. nov., an anamorphic yeast species in the Yarrowia clade, isolated from water in mangrove forests in Phang-Nga Province, Thailand. Int J Syst Evol Microbiol 58:515–519.  https://doi.org/10.1099/ijs.0.65506-0 CrossRefPubMedGoogle Scholar
  52. Loureiro STA, de Queiroz-Cavalcanti MA, Neves RP, de Oliveira Passavante JZ (2005) Yeasts isolated from sand and sea water in beaches of Olinda, Pernambuco state, Brazil. Braz J Microbiol 36:1–8CrossRefGoogle Scholar
  53. Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiol 73:474–481CrossRefGoogle Scholar
  54. Matsunga T, Tskeyama H, Miura Y, Yamazaki T, Furuya H, Sode K (1995) Screening of marine cyanobacteria for high palmitoleic acid production. FEMS Microbiolett 133(1–2):137–141.  https://doi.org/10.1111/j.1574-6968.1995.tb07874.x CrossRefGoogle Scholar
  55. Mekha N, Takashima M, Boon-long J, Cho O, Sugita T (2014) Three new basidiomycetous yeasts, Pseudozyma alboarmeniaca sp. nov., Pseudozyma crassa sp. nov. and Pseudozyma siamensis sp. nov. isolated from Thai patients. Med Microbiol Immun 58(1):9–14CrossRefGoogle Scholar
  56. Mitsui T (1992) New cosmetics science. Elsevier, Amsterdam, p 449Google Scholar
  57. Morais PB, Martins MB, Klaczko LB, Mendonca-Hagler LC, Hagler AN (1995) Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl Environ Microbiol 61:4251–4257PubMedPubMedCentralGoogle Scholar
  58. Morgan NG, Dhayal S (2010) Unsaturated fatty acids as cytoprotective agents inthe pancreatic beta-cell. Prostaglandins Leukot Essent Fatty Acids 82:231–236CrossRefPubMedGoogle Scholar
  59. Morita T, Takashima M, Fukuoka T, Konishi M, Imura T, Kitamoto D (2010) Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Appl Microbiol Biotechnol 88: 679–688.  https://doi.org/10.1007/s00253-010-2762-5 CrossRefPubMedGoogle Scholar
  60. Papandreou C (2014) Polyunsaturated fatty acids in relation to sleep quality and depression in obstructive sleep apnea hypopnea syndrome. In: Watson RR, Meester FD (eds) Omega-3 fatty acids in brain and neurological health. Academic Press, Boston, pp 337–347Google Scholar
  61. Pizarro FJ, Jewett MC, Nielsen J, Agosin E (2008) Growth temperature exerts differential physiological and transcriptional responses in laboratory and wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 74(20):6358–6368CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pumijumnong N (2014) Mangrove forests in Thailand. In: Faridah-Hanum I, Latiff A, Hakeem K, Ozturk M (eds) Mangrove ecosystems of Asia. Springer, New York, pp 61–80CrossRefGoogle Scholar
  63. Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268CrossRefPubMedGoogle Scholar
  64. Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic Press, London, pp 567–668Google Scholar
  65. Sales-Campos H, Reis de Souza P, Peghini BC, Santana da Silva J, Cardo CR (2012) An overview of the modulatory effects of oleic acid in health and disease. Mini Rev Med Chem 13(2):201–210Google Scholar
  66. Sampaio JP (2011) Rhodosporidium banno (1967). In Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1523–1540CrossRefGoogle Scholar
  67. Schulze I, Hansen S, Grobhans S, Rudszuck T, Ochsenreither K, Syldatk C, Neumann A (2014) Characterization of newly isolated oleaginous yeasts Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis. AMB Express 4:24CrossRefPubMedPubMedCentralGoogle Scholar
  68. Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667CrossRefPubMedGoogle Scholar
  69. Sitepu I, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol Adv 32:1336–1360.  https://doi.org/10.1016/j.biotechadv.2014.08.003 CrossRefPubMedGoogle Scholar
  70. Starmer WT, Lachance MA (2011) Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 65–83CrossRefGoogle Scholar
  71. Steen E, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562CrossRefPubMedGoogle Scholar
  72. Sugita T (2011) Trichosporon Behrend (1890). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 2015–2062CrossRefGoogle Scholar
  73. Suh SO, McHugh JV, Blackwell M (2004) Expansion of the Candida tanzawaensis yeast clade: 16 novel Candida species from basidiocarp-feeding beetles. Int J Syst Evol Microbiol 54:2409–2429.  https://doi.org/10.1099/ijs.0.63246-0 CrossRefPubMedGoogle Scholar
  74. Sybren de Hoog G, Smith MT (2011) Galactomyces Redhead and Malloch (1977). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 413–420CrossRefGoogle Scholar
  75. Tamura K, Stecher K, Peterson D, Filipski A, Kumur S (2013) Mega6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 12:2725–2729CrossRefGoogle Scholar
  76. Tanimura A, Tskashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J (2014) Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresour Technol 153:230–235.  https://doi.org/10.1016/j.biortech.2013.11.086 CrossRefPubMedGoogle Scholar
  77. Thanh VN (2006) Lipomyces orientalis sp. nov., a yeast species isolated from soil in Vietnam. Int J Syst Evol Microbiol 56:2009–2013CrossRefPubMedGoogle Scholar
  78. Vogel C, Rogerson A, Schatz S, Laubach H, Tallman A, Fell J (2007) Prevalence of yeasts in beach sand at three bathing beaches in South Florida. Water Res 41:1915–1920CrossRefPubMedGoogle Scholar
  79. Williams CM (2002) Dietary fatty acids and human health. Ann Zootech 49:165–180CrossRefGoogle Scholar
  80. Xin F, Zhang Y, Xue S, Chi Z, Liu G, Hu Z, Chia Z (2017) Heavy oils (mainly alkanes) over-production from inulin by Aureobasidium melanogenum 9 – 1 and its transformant 88 carrying an inulinase gene. Renew Energy 105:561–568.  https://doi.org/10.1016/j.renene.2017.01.004 CrossRefGoogle Scholar
  81. Yang SP, Wu ZH, Jian JC (2011a) Distribution of marine red yeasts in shrimps and the environments of shrimp culture. Curr Microbiol 62:1638–1642CrossRefPubMedGoogle Scholar
  82. Yang ZH, Miyahara H, Hatanaka A (2011b) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-A(y) mice with genetic type 2 diabetes. Lipids Health Dis 10:8.  https://doi.org/10.1186/1476-511x-10-120 CrossRefGoogle Scholar
  83. Zajc J, Zalar P, Gunde-Cimerman N (2017) Yeasts in hypersaline habitats. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 293–330CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Biochemistry and Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand

Personalised recommendations