Advertisement

Heterologous production of resveratrol in bacterial hosts: current status and perspectives

  • A. Braga
  • P. Ferreira
  • J. Oliveira
  • I. Rocha
  • N. Faria
Review
  • 245 Downloads

Abstract

The polyphenol resveratrol (3,5,4′-trihydroxystilbene) is a well-known plant secondary metabolite, commonly used as a medical ingredient and a nutritional supplement. Due to its health-promoting properties, the demand for resveratrol is expected to continue growing. This stilbene can be found in different plants, including grapes, berries (blackberries, blueberries and raspberries), peanuts and their derived food products, such as wine and juice. The commercially available resveratrol is usually extracted from plants, however this procedure has several drawbacks such as low concentration of the product of interest, seasonal variation, risk of plant diseases and product stability. Alternative production processes are being developed to enable the biotechnological production of resveratrol by genetically engineering several microbial hosts, such as Escherichia coli, Corynebacterium glutamicum, Lactococcus lactis, among others. However, these bacterial species are not able to naturally synthetize resveratrol and therefore genetic modifications have been performed. The application of emerging metabolic engineering offers new possibilities for strain and process optimization. This mini-review will discuss the recent progress on resveratrol biosynthesis in engineered bacteria, with a special focus on the metabolic engineering modifications, as well as the optimization of the production process. These strategies offer new tools to overcome the limitations and challenges for microbial production of resveratrol in industry.

Keywords

Bacteria Malonyl-CoA Metabolic engineering Pathway engineering Resveratrol 

Notes

Acknowledgements

We would like to thank the European Union Framework Program 7 “BacHBerry” (http://www.bachberry.eu), Project No. FP7-613793 for financial support, the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BiotecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. Abe I, Watanabe T, Noguchi H (2004) Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases. Phytochemistry 65:2447–2453.  https://doi.org/10.1016/j.phytochem.2004.08.005 CrossRefPubMedGoogle Scholar
  2. Afonso MS, Ferreira S, Domingues FC, Silva F (2015) Resveratrol production in bioreactor: assessment of cell physiological states and plasmid segregational stability. Biotechnol Rep 5:7–13.  https://doi.org/10.1016/j.btre.2014.10.008 CrossRefGoogle Scholar
  3. Aggarwal BB, Bhardwaj A, Aggarwal RS et al (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24.5A:2783–2840Google Scholar
  4. An JH, Kim YS (1998) A gene cluster encoding malonyl-CoA decarboxylase (MatA), malonyl-CoA synthetase (MatB) and a putative dicarboxylate carrier protein (MatC) in Rhizobium trifolii. Cloning, sequencing, and expression of the enzymes in Escherichia coli. Eur J Biochem 257:395–402.  https://doi.org/10.1046/j.1432-1327.1998.2570395.x CrossRefPubMedGoogle Scholar
  5. Anekonda TS (2006) Resveratrol-A boon for treating Alzheimer’s disease? Brain Res Rev 52:316–326.  https://doi.org/10.1016/j.brainresrev.2006.04.004 CrossRefPubMedGoogle Scholar
  6. Bauer JH, Goupil S, Garber GB, Helfand SL (2004) An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci 101:12980–12985.  https://doi.org/10.1073/pnas.0403493101 CrossRefPubMedGoogle Scholar
  7. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506.  https://doi.org/10.1038/nrd2060 CrossRefPubMedGoogle Scholar
  8. Bavaresco L, Petegolli D, Cantù E et al (1997) Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. Vitis 36:77–83Google Scholar
  9. Beekwilder J, Wolswinkel R, Jonker H et al (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672.  https://doi.org/10.1128/AEM.00609-06 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berg J, Tymoczko J, Stryer L (2002) Biochemistry. New York, New York, p 10010Google Scholar
  11. Blond J, Denis M, Bezard J (1995) Antioxidant action of resveratrol in lipid peroxidation. Sci Aliments 15:347–358Google Scholar
  12. Braga A, Oliveira J, Silva R et al (2018a) Impact of the cultivation strategy on resveratrol production from glucose in engineered Corynebacterium glutamicum. J Biotechnol 265:70–75.  https://doi.org/10.1016/j.jbiotec.2017.11.006 CrossRefPubMedGoogle Scholar
  13. Braga A, Silva M, Oliveira J et al (2018b) An adsorptive bioprocess for production and recovery of resveratrol with Corynebacterium glutamicum. J Chem Technol Biotechnol.  https://doi.org/10.1002/jctb.5538 CrossRefGoogle Scholar
  14. Bulter T, Bernstein JR, Liao JC (2003) A perspective of metabolic engineering strategies: moving up the systems hierarchy. Biotechnol Bioeng 84:815–821.  https://doi.org/10.1002/bit.10845 CrossRefPubMedGoogle Scholar
  15. Camacho-Zaragoza JM, Hernández-Chávez G, Moreno-Avitia F et al (2016) Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb Cell Fact 15:163.  https://doi.org/10.1186/s12934-016-0562-z CrossRefPubMedPubMedCentralGoogle Scholar
  16. Choi O, Wu C-Z, Kang SY et al (2011) Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol 38:1657–1665.  https://doi.org/10.1007/s10295-011-0954-3 CrossRefPubMedGoogle Scholar
  17. de Fouchécour F, Sánchez-Castañeda A-K, Saulou-Bérion C, Spinnler H (2018) Process engineering for microbial production of 3-hydroxypropionic acid. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2018.03.020 PubMedCrossRefGoogle Scholar
  18. Du J, Shao Z, Zhao H (2013) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890.  https://doi.org/10.1109/TMI.2012.2196707 CrossRefGoogle Scholar
  19. Finzel K, Lee DJ, Burkart MD (2015) Using modern tools to probe the structure-function relationship of fatty acid synthases. ChemBioChem 16:528–547.  https://doi.org/10.1002/cbic.201402578 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839.  https://doi.org/10.1128/AEM.00270-09 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Frankel EN, Waterhouse AL, Kinsella JE (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 341:1103–1104.  https://doi.org/10.1016/0140-6736(93)92472-6 CrossRefPubMedGoogle Scholar
  22. Gaspar P, Dudnik A, Neves AR, Föster J (2016) Engineering Lactococcus lactis for stilbene production. In: Abstract from 28th International Conference on Polyphenols 2016. Vienna, AustriaGoogle Scholar
  23. Halls C, Yu O (2008) Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol 26:77–81.  https://doi.org/10.1016/j.tibtech.2007.11.002 CrossRefPubMedGoogle Scholar
  24. Hamberger B, Hahlbrock K (2004) The 4-coumarate:CoA ligase gene family in Arabidopsis thaliana comprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc Natl Acad Sci 101:2209–2214.  https://doi.org/10.1073/pnas.0307307101 CrossRefPubMedGoogle Scholar
  25. Hua D, Ma C, Song L et al (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790.  https://doi.org/10.1007/s00253-006-0735-5 CrossRefPubMedGoogle Scholar
  26. Huang Q, Lin Y, Yan Y (2013) Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng 110:3188–3196.  https://doi.org/10.1002/bit.24988 CrossRefPubMedGoogle Scholar
  27. Hubbard BP, Sinclair DA (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 35:146–154.  https://doi.org/10.1016/j.tips.2013.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jiang H, Wood KV, Morgan J (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71:2962–2969.  https://doi.org/10.1128/AEM.71.6.2962 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kallscheuer N, Vogt M, Stenzel A et al (2016) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng 38:47–55.  https://doi.org/10.1016/j.ymben.2016.06.003 CrossRefPubMedGoogle Scholar
  30. Katsuyama Y, Funa N, Horinouchi S (2007) Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli. Biotechnol J 2:1286–1293.  https://doi.org/10.1002/biot.200700098 CrossRefPubMedGoogle Scholar
  31. Kiselev KV (2011) Perspectives for production and application of resveratrol. Appl Microbiol Biotechnol 90:417–425.  https://doi.org/10.1007/s00253-011-3184-8 CrossRefPubMedGoogle Scholar
  32. Kloosterman H, Hessels GI, Vrijbloed JW et al (2003) (De)regulation of key enzyme steps in the shikimate pathway and phenylalanine-specific pathway of the actinomycete Amycolatopsis methanolica. Microbiology 149:3321–3330.  https://doi.org/10.1099/mic.0.26494-0 CrossRefPubMedGoogle Scholar
  33. Kundu JK, Surh YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 269:243–261.  https://doi.org/10.1016/j.canlet.2008.03.057 CrossRefPubMedGoogle Scholar
  34. Li M, Kildegaard KR, Chen Y et al (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11.  https://doi.org/10.1016/j.ymben.2015.08.007 CrossRefPubMedGoogle Scholar
  35. Li M, Schneider K, Kristensen M et al (2016) Engineering yeast for high-level production of stilbenoid antioxidants. Sci Rep 6:1–8.  https://doi.org/10.1038/srep36827 CrossRefGoogle Scholar
  36. Light SH, Halavaty AS, Minasov G et al (2012) Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain. Protein Sci 21:887–895.  https://doi.org/10.1002/pro.2075 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lim CG, Fowler ZL, Hueller T et al (2011) High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol 77:3451–3460.  https://doi.org/10.1128/AEM.02186-10 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu X, Lin J, Hu H et al (2016) De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli. FEMS Microbiol Lett 363:1–5.  https://doi.org/10.1093/femsle/fnw061 CrossRefGoogle Scholar
  39. Lozoya E, Hoffmann H, Douglas C et al (1988) Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley. Eur J Biochem 176:661–667.  https://doi.org/10.1111/j.1432-1033.1988.tb14328.x CrossRefPubMedGoogle Scholar
  40. Lu Y, Shao D, Shi J et al (2016) Strategies for enhancing resveratrol production and the expression of pathway enzymes. Appl Microbiol Biotechnol 100:7407–7421.  https://doi.org/10.1007/s00253-016-7723-1 CrossRefPubMedGoogle Scholar
  41. Lucas-Abellán C, Fortea I, López-Nicolás JM, Núñez-Delicado E (2007) Cyclodextrins as resveratrol carrier system. Food Chem 104:39–44.  https://doi.org/10.1016/j.foodchem.2006.10.068 CrossRefGoogle Scholar
  42. Lütke-Eversloh T, Stephanopoulos G (2007) L-Tyrosine production by deregulated strains of Escherichia coli. Appl Microbiol Biotechnol 75:103–110.  https://doi.org/10.1007/s00253-006-0792-9 CrossRefPubMedGoogle Scholar
  43. Maeda H, Dudareva N (2012) The Shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105.  https://doi.org/10.1146/annurev-arplant-042811-105439 CrossRefPubMedGoogle Scholar
  44. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538PubMedPubMedCentralGoogle Scholar
  45. Mei YZ, Liu RX, Wang DP et al (2015) Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnol Lett 37:9–18.  https://doi.org/10.1007/s10529-014-1651-x CrossRefPubMedGoogle Scholar
  46. Milke L, Aschenbrenner J, Marienhagen J, Kallscheuer N (2018) Production of plant-derived polyphenols in microorganisms: current state and perspectives. Appl Microbiol Biotechnol.  https://doi.org/10.1007/s00253-018-8747-5 PubMedCrossRefGoogle Scholar
  47. Morita H, Noguchi H, Schröder J, Abe I (2001) Novel polyketides synthesized with a higher plant stilbene synthase. Eur J Biochem 268:3759–3766.  https://doi.org/10.1046/j.1432-1327.2001.02289.x CrossRefPubMedGoogle Scholar
  48. Na D, Yoo SM, Chung H et al (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174.  https://doi.org/10.1038/nbt.2461 CrossRefPubMedGoogle Scholar
  49. Nonomura S, Kanagawa H, Makimoto A (1963) Chemical constituents of polygonaceous plants. I. Studies on the components of Ko-J O-Kon. (Polygonum cuspidatum Sieb. Et Zucc.). Yakugaku Zasshi 83:988–990CrossRefPubMedGoogle Scholar
  50. Park SR, Yoon JA, Paik JH et al (2009) Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. J Biotechnol 141:181–188.  https://doi.org/10.1016/j.jbiotec.2009.03.013 CrossRefPubMedGoogle Scholar
  51. Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chemie-Int Ed 50:586–621.  https://doi.org/10.1002/anie.201000044 CrossRefGoogle Scholar
  52. Rodrigues JL, Prather KLJ, Kluskens LD, Rodrigues LR (2015) Heterologous production of curcuminoids. Microbiol Mol Biol Rev 79:39–60.  https://doi.org/10.1128/MMBR.00031-14 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17.  https://doi.org/10.3389/fmicb.2014.00172 CrossRefGoogle Scholar
  54. Santos CNS, Koffas M, Stephanopoulos G (2011) Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab Eng 13:392–400.  https://doi.org/10.1016/j.ymben.2011.02.002 CrossRefPubMedGoogle Scholar
  55. Schroeder AC, Kumaran S, Hicks LM et al (2008) Contributions of conserved serine and tyrosine residues to catalysis, ligand binding, and cofactor processing in the active site of tyrosine ammonia lyase. Phytochemistry 69:1496–1506.  https://doi.org/10.1016/j.phytochem.2008.02.007 CrossRefPubMedGoogle Scholar
  56. Sharma S, Kulkarni SK, Chopra K (2007) Effect of resveratrol, a polyphenolic phytoalexin, on thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Fundam Clin Pharmacol 21:89–94.  https://doi.org/10.1111/j.1472-8206.2006.00455.x CrossRefPubMedGoogle Scholar
  57. Shin SY, Han NS, Park YC et al (2011) Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzyme Microb Technol 48:48–53.  https://doi.org/10.1016/j.enzmictec.2010.09.004 CrossRefPubMedGoogle Scholar
  58. So-Yeon S, Nam SH, Yong-Cheol P et al (2011) Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzyme Microb Technol 48:48–53.  https://doi.org/10.1016/j.enzmictec.2010.09.004 CrossRefGoogle Scholar
  59. Subrahmanyam S Jr, Cronan JE (1998) Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol 180:4596–4602PubMedPubMedCentralGoogle Scholar
  60. Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76:3361–3363.  https://doi.org/10.1128/AEM.02796-09 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Takamura Y, Nomura G (1988) Changes in the intracellular concentration of Acetyl-CoA and Malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J Gen Microbiol 134:2249–2253PubMedGoogle Scholar
  62. Takaoka M (1939) Resveratrol, a new phenolic compound, from Veratrumgrandiflorum. J Chem Soc Japan 60:1090–1100Google Scholar
  63. Tee KL, Wong TS (2013) Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 31:1707–1721.  https://doi.org/10.1016/j.biotechadv.2013.08.021 CrossRefPubMedGoogle Scholar
  64. Theisen M, Liao JC (2016) Industrial biotechnology: Escherichia coli as a host. In: Industrial biotechnology. Wiley, New York, pp 149–181CrossRefGoogle Scholar
  65. Trošt K, Golc-Wondra A, Prošek M (2009) Degradation of polyphenolic antioxidants in blueberry nectar aseptically filled in PET. Acta Chim Slov 56:494–502Google Scholar
  66. van Summeren-Wesenhagen PV, Marienhagen J (2013) Putting bugs to the blush: metabolic engineering for phenylpropanoid-derived products in microorganisms. Bioengineered 4:355–362.  https://doi.org/10.4161/bioe.23885 CrossRefPubMedPubMedCentralGoogle Scholar
  67. van Summeren-Wesenhagen PV, Marienhagen J (2015) Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Appl Environ Microbiol 81:840–849.  https://doi.org/10.1128/AEM.02966-14 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Vannelli T, Wei Qi W, Sweigard J et al (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng 9:142–151.  https://doi.org/10.1016/j.ymben.2006.11.001 CrossRefPubMedGoogle Scholar
  69. Vingtdeux V, Dreses-Werringloer U, Zhao H et al (2008) Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 9:1–5.  https://doi.org/10.1186/1471-2202-9-S2-S6 CrossRefGoogle Scholar
  70. Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615.  https://doi.org/10.1016/j.devcel.2005.09.017 CrossRefPubMedGoogle Scholar
  71. Wang J, Ho L, Zhao Z et al (2006) Moderate consumption of Cabernet Sauvignon attenuates A neuropathology in a mouse model of Alzheimer’s disease. FASEB J 20:2313–2320.  https://doi.org/10.1096/fj.06-6281com CrossRefPubMedGoogle Scholar
  72. Wang T, Ma X, Du G, Chen J (2012) Overview of regulatory strategies and molecular elements in metabolic engineering of bacteria. Mol Biotechnol 52:300–308.  https://doi.org/10.1007/s12033-012-9514-y CrossRefPubMedGoogle Scholar
  73. Wang J, Yang Y, Yan Y (2018) Bioproduction of resveratrol. In: Biotechnology of natural products. Springer, Cham, pp 61–79CrossRefGoogle Scholar
  74. Watts KT, Lee PC, Schmidt-Dannert C (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:1–12.  https://doi.org/10.1186/1472-6750-6-22 CrossRefGoogle Scholar
  75. Wu J, Liu P, Fan Y et al (2013) Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. J Biotechnol 167:404–411.  https://doi.org/10.1016/j.jbiotec.2013.07.030 CrossRefPubMedGoogle Scholar
  76. Wu J, Zhou P, Zhang X, Dong M (2017) Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 44:1083–1095.  https://doi.org/10.1007/s10295-017-1937-9 CrossRefPubMedGoogle Scholar
  77. Xu P, Ranganathan S, Fowler ZL et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587.  https://doi.org/10.1016/j.ymben.2011.06.008 CrossRefPubMedGoogle Scholar
  78. Yang X, Li X, Ren J (2014) From French Paradox to cancer treatment: anti-cancer activities and mechanisms of resveratrol. Anti-Cancer Agents Med Chem (formerly Curr Med Chem Agents) 14:806–825CrossRefGoogle Scholar
  79. Yang Y, Lin Y, Li L et al (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226.  https://doi.org/10.1016/j.ymben.2015.03.018 CrossRefPubMedGoogle Scholar
  80. Yesilirmak F, Sayers Z (2009) Heterelogous expression of plant genes. Int J Plant Genom.  https://doi.org/10.1155/2009/296482 CrossRefGoogle Scholar
  81. Zha W, Rubin-Pitel SB, Shao Z, Zhao H (2009) Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng 11:192–198.  https://doi.org/10.1016/j.ymben.2009.01.005 CrossRefPubMedGoogle Scholar
  82. Zhang H, Stephanopoulos G (2013) Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol 97:3333–3341.  https://doi.org/10.1007/s00253-012-4544-8 CrossRefPubMedGoogle Scholar
  83. Zhang Y, Li SZ, Li J et al (2006) Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031.  https://doi.org/10.1021/ja0622094 CrossRefPubMedGoogle Scholar
  84. Zhang E, Guo X, Meng Z et al (2015) Construction, expression, and characterization of Arabidopsis thaliana 4CL and Arachis hypogaea RS fusion gene 4CL::RS in Escherichia coli. World J Microbiol Biotechnol 31:1379–1385.  https://doi.org/10.1007/s11274-015-1889-z1 CrossRefPubMedGoogle Scholar
  85. Zhou K, Qiao K, Edgar S, Stephanopoulo G (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33:377–383CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • A. Braga
    • 1
  • P. Ferreira
    • 1
  • J. Oliveira
    • 1
  • I. Rocha
    • 1
    • 2
  • N. Faria
    • 1
  1. 1.Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal

Personalised recommendations