Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products



With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO2, including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO2.


Carbon dioxide fixation Bioproducts Cell factory Gas fermentation Cupriavidus necator Hydrogen-oxidizing bacteria 


  1. Alagesan S, Minton NP, Malys N (2018) 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16. Metabolomics 14:9–19CrossRefPubMedGoogle Scholar
  2. Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr NP et al (ed) The prokaryotes. Springer, New York, pp 865–893CrossRefGoogle Scholar
  3. Ariffin H, Nishida H, Shirai Y et al (2010) Highly selective transformation of poly[R-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polym Degrad Stab 95:1375–1381CrossRefGoogle Scholar
  4. Badger MR, Bek EJ (2008) Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acqusition by the CBB cycle. J Exp Bot 59:1525–1541CrossRefPubMedGoogle Scholar
  5. Bae S, Kwak K, Kim S et al (2001) Isolation and characterization of CO2-fixing hydrogen-oxidizing marine bacteria. J Biosci Bioeng 91(5):442–448CrossRefPubMedGoogle Scholar
  6. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boon N, Defoirdt T, De Windt W et al (2010) Hydroxybutyrate and poly-hydroxybutyrate as components of animal feed or feed additives. US Patent 2010/0093860 A1Google Scholar
  8. Bowien B, Kusian B (2002) Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93CrossRefPubMedGoogle Scholar
  9. Brigham CJ, Budde CF, Holder JW et al (2010) Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 192:5454–5464CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bugnicourt E, Cinelli P, Lazzeri A et al (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808CrossRefGoogle Scholar
  11. Burgdorf T, Lenz O, Buhrke T et al (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196CrossRefPubMedGoogle Scholar
  12. Calloway DH, Kumar AM (1969) Protein quality of the bacterium Hydrogenomonas eutropha. Appl Microbiol 17:176–178PubMedPubMedCentralGoogle Scholar
  13. Conrad R (1996) Microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640PubMedPubMedCentralGoogle Scholar
  14. Crépin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92–101CrossRefPubMedGoogle Scholar
  15. Defoirdt T, Boon N, Sorgeloos P et al (2009) Short chain fatty acids and poly-beta-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685CrossRefPubMedGoogle Scholar
  16. Florentino LA, Jaramillo PMD, Silva KB et al (2012) Physiological and symbiotic diversity of Cupriavidus necator strains isolated from nodules of Leguminosae species. Sci Agric 69(4):247–258CrossRefGoogle Scholar
  17. Gai CS, Lu J, Brigham CJ et al (2014) Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16. AMB Express 4:2–14CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garcia-Gonzalez L, Mozumder MSI, Dubreuil M et al (2014) Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catal Today 257(2):237–245Google Scholar
  19. Garcia-Ochoa F, Gomez E, Santos V et al (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307CrossRefGoogle Scholar
  20. Ghysels S, Mozumder MSI, De Wever H et al (2018) Targeted poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic production from carbon dioxide. Bioresour Technol 249:858–868CrossRefPubMedGoogle Scholar
  21. Grousseau E, Lu J, Gorret N et al (2014) Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl Microbiol Biotechnol 98:4277–4290CrossRefPubMedGoogle Scholar
  22. Gruber S, Schwab H, Heidinger P (2017) CbbR and RegA regulate cbb operon transcription in Ralstonia eutropha H16. J Biotechnol 257:78–86CrossRefPubMedGoogle Scholar
  23. Grzeszik C, Jeffke T, Schäferjohann J et al (2000) Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha. J Mol Microbiol Biotechnol 2:311–320PubMedGoogle Scholar
  24. Huber R, Eder W (2006) Aquificales. In: Dworkin M et al (ed) The prokaryotes: a handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 925–928CrossRefGoogle Scholar
  25. Hunt AJ, Sin EHK, Marriott R et al (2010) Generation, capture, and utilization of industrial carbon dioxide. Chem Sus Chem 3:306–332CrossRefGoogle Scholar
  26. Jugder B-E, Lebhar H, Aguey-Zinsou K-F et al (2016) Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications. MethodsX 3:242–250CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kang S, Yu J (2015a) Reaction routes in catalytic reforming of poly(3-hydroxybutyrate) into renewable hydrogen carbon oil. RSC Adv 5:30005–30013CrossRefGoogle Scholar
  28. Kang S, Yu J (2015b) A gasoline-grade biofuel formed from renewable polyhydroxybutyrate on solid phosphoric acid. Fuel 160:282–290CrossRefGoogle Scholar
  29. Kang S, Yu J (2015c) Hydrophobic organic compounds from hydrothermal liquefaction of bacterial biomass. Biomass Bioenergy 74:92–95CrossRefGoogle Scholar
  30. Kunasundari B, Murugaiyah V, Kaur G et al (2013) Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS ONE 8(10):e78528. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kusian B, Sültemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184:5018–5026CrossRefPubMedPubMedCentralGoogle Scholar
  32. Laeger T, Metges CC, Kuhla B (2010) Role of β-hydroxybutyric acid in the central regulation of energy balance. Appetite 54:450–455CrossRefPubMedGoogle Scholar
  33. Laycock B, Halley P, Pratt S et al (2013) The chemomechanical properties of microbial polyhydroxyalkanoate. Prog Polym Sci 38:536–583CrossRefGoogle Scholar
  34. Lee S-E, Li QX, Yu J (2006) Proteomic examination of Ralstonia eutropha in cellular responses to formic acid. Proteomics 6(15):4259–4268CrossRefPubMedGoogle Scholar
  35. Li H, Opgenorth PH, Wernick DG et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596–1596CrossRefPubMedGoogle Scholar
  36. Lu Y, Yu J (2017a) Comparison analysis on the energy efficiencies and biomass yields in microbial CO2 fixation. Process Biochem 62:151–160CrossRefGoogle Scholar
  37. Lu Y, Yu J (2017b) Gas mass transfer with microbial CO2 fixation and poly(3-hydroxybutyrate) synthesis in a packed bed bioreactor. Biochem Eng J 122:13–21CrossRefGoogle Scholar
  38. Luef KP, Stelzer F, Wiesbrock F (2015) Poly(hydroxy alkanoate)s in medical applications. Chem Biochem Eng Q 29:287–297CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marc J, Grousseau E, Lombard E et al (2017) Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metabolic Eng 42:74–84CrossRefGoogle Scholar
  40. Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:343–348CrossRefPubMedGoogle Scholar
  41. Müller J, MacEachran D, Burd H et al (2013) Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 79(14):4433–4439CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nowotny J, Bak T, Chu D et al (2014) Sustainable practices: solar hydrogen fuel and education program on sustainable energy systems. Int J Hydrog Energy 39:4151–4157CrossRefGoogle Scholar
  43. Obruca S, Sedlacek P, Mravec F et al (2016) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100:1365–1376CrossRefPubMedGoogle Scholar
  44. Park I, Jho EH, Nam K (2014) Optimization of carbon dioxide and valeric acid utilization for polyhydroxyalkanoates synthesis by Cupriavidus necator. J Polym Environ 22:244–251CrossRefGoogle Scholar
  45. Peplinski K, Ehrenreich A, Döring C et al (2010) Genome-wide transcriptome analyses of the Knallgas bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology 156:2136–2152CrossRefPubMedGoogle Scholar
  46. Pohlmann A, Fricke WF, Reinecke F et al (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262CrossRefPubMedGoogle Scholar
  47. Przybylski D, Rohwerder T, Dilßner C et al (2015) Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99:2131–2145CrossRefPubMedGoogle Scholar
  48. Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102CrossRefPubMedGoogle Scholar
  49. Schlegel HG, Gottschalk G, Von Bartha R (1961) Formation and utilization of poly-[beta]-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465CrossRefPubMedGoogle Scholar
  50. Schröder V, Emonts B, Janβen H et al (2004) Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar. Chem Eng Technol 27:847–851CrossRefGoogle Scholar
  51. Schwartz E et al (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 9(22):5132–5142CrossRefPubMedGoogle Scholar
  52. Spear JR, Walker JJ, McCollom TM et al (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci 102(7):2555–2560CrossRefPubMedGoogle Scholar
  53. Takeshita T, Ishizaki A (1996) Influence of hydrogen limitation on gaseous substrate utilization in autotrophic culture of Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 81:83–86CrossRefGoogle Scholar
  54. Tanaka K, Ishizaki A, Kanamaru T et al (1995) Production of poly(D-3-hydroxybutyrate) from CO2, H2, and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275CrossRefPubMedGoogle Scholar
  55. Tanaka K, Miyawaki K, Yamaguchi A et al (2011) Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbiol Biotechnol 92:1161–1169CrossRefPubMedGoogle Scholar
  56. Tiemeyer A, Link H, Weuster-Botz D (2007) Kinetic studies on autohydrogenotrophic growth of Ralstonia eutropha with nitrate as terminal electron acceptor. Appl Microbiol Biotechnol 76:75–81CrossRefPubMedGoogle Scholar
  57. Torella CJ, Gagliardi JS, Chen DK et al (2015) Efficient solar-to-fuels production from a hybrid microbial/water-splitting catalyst system. Proc Natl Acad Sci USA 112:2337–2342CrossRefPubMedGoogle Scholar
  58. Valappil S, Misra SK, Boccaccini AR et al (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3(6):853–868CrossRefPubMedGoogle Scholar
  59. Vandamme P, Coeyne T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289CrossRefPubMedGoogle Scholar
  60. Volova TG, Kiselev EG, Shishatskaya EI et al (2013a) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour Technol 146:215–222CrossRefPubMedGoogle Scholar
  61. Volova TG, Zhila NO, Kalacheva GS et al (2013b) Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological biochemical properties and growth of Ralstonia eutropha. Res Microbiol 164:164–171CrossRefPubMedGoogle Scholar
  62. Yoon K-S, Fukuda K, Fujisawa K et al (2011) Purification and characterization of a highly thermostable, oxygen-resistant, respiratory [NiFe]-hydrogenase from a marine, aerobic hydrogen-oxidizing bacterium Hydrogenovibrio marinus. Int J Hydrog Energy 36:7081–7088CrossRefGoogle Scholar
  63. Yu J (2014) Bio-based products from solar energy and carbon dioxide. Trends Biotechnol 32(1):5–10CrossRefPubMedGoogle Scholar
  64. Yu J, Plackett D, Chen LXL (2005) Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym Degrad Stab 89:289–299CrossRefGoogle Scholar
  65. Yu J, Dow A, Pingali S (2013) The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. Int J Hydrog Energy 38:8683–8690CrossRefGoogle Scholar
  66. Zhila N, Kalacheva G, Volova T (2015) Fatty acid composition and polyhydroxyalkanoates production by Cupriavidus eutrophus B-10646 cells grown on different carbon sources. Process Biochem 50:69–78CrossRefGoogle Scholar
  67. Ziogou C, Ipsakis D, Stergiopoulos F et al (2012) Infrastructure, automation and model-based operation strategy in a stand-alone hydrolytic solar-hydrogen production unit. Int J Hydrog Energy 37:16591–16603CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Hawaii Natural Energy InstituteUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations