Advertisement

Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7

  • Joseph Guevara-Luna
  • Patricia Alvarez-Fitz
  • Elvira Ríos-Leal
  • Macdiel Acevedo-Quiroz
  • Sergio Encarnación-Guevara
  • Ma Elena Moreno-Godinez
  • Mildred Castellanos-Escamilla
  • Jeiry Toribio-Jiménez
  • Yanet Romero-Ramírez
Original Paper
  • 137 Downloads

Abstract

Benzo[a]pyrene (BaP) is recognized as a potentially carcinogenic and mutagenic hydrocarbon, and thus, its removal from the environment is a priority. The use of thermophilic bacteria capable of biodegrading or biotransforming this compound to less toxic forms has been explored in recent decades, since it provides advantages compared to mesophilic organisms. This study assessed the biotransformation of BaP by the thermophilic bacterium Bacillus licheniformis M2-7. Our analysis of the biotransformation process mediated by strain M2-7 on BaP shows that it begins during the first 3 h of culture. The gas chromatogram of the compound produced shows a peak with a retention time of 17.38 min, and the mass spectra shows an approximate molecular ion of m/z 167, which coincides with the molecular weight of the chemical formula C6H4(COOH)2, confirming a chemical structure corresponding to phthalic acid. Catechol 2,3-dioxygenase (C23O) enzyme activity was detected in minimal saline medium supplemented with BaP (0.33 U mg−1 of protein). This finding suggests that B. licheniformis M2-7 uses the meta pathway for biodegrading BaP using the enzyme C23O, thereby generating phthalic acid as an intermediate.

Keywords

Benzo[a]pyrene Phthalic acid Bacillus licheniformis Biotransformation Thermophilic bacteria Catechol 2,3-dioxygenase 

Notes

Acknowledgements

This work was supported by Grants 249671 from Consejo Nacional de Ciencia y Tecnología and by Agreement 2014 of the University of Guerrero. Joseph Guevara-Luna thanks Consejo Nacional de Ciencia y Tecnología for MSc Scholarship (402669). We are grateful to Travis Ashworth for the critical discussions of this work.

References

  1. Alvarez-Fitz P, Alvarez L, Marquina S, Luna-Herrera J, Navarro-García VM (2012) Enzymatic reduction of 9-methoxytariacuripyrone by Saccharomyces cerevisiae and its antimycobacterial activity. Molecules 17:8464–8470.  https://doi.org/10.3390/molecules17078464 CrossRefPubMedGoogle Scholar
  2. Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W (2000) Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol 66(2):518–523.  https://doi.org/10.1128/AEM.66.2.518-523.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bang DY, Lee IK, Lee BM (2011) Toxicological characterization of phthalic acid. Toxicol Res 27(4):191–203.  https://doi.org/10.5487/TR.2011.27.4.191 CrossRefPubMedCentralGoogle Scholar
  4. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N et al (2009) A review of human carcinogens—Part F: chemical agents and related occupations. Lancet Oncol 10(4):321–322.  https://doi.org/10.1016/S1470-2045(09)70358-4 CrossRefPubMedGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7(72):248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  6. Bubinas A, Giedraitytė G, Kalėdienė L, Nivinskiene O, Butkiene R (2008) Degradation of naphthalene by thermophilic bacteria via a pathway, through protocatechuic acid. Cent Eur J Biol 3(1):61–68.  https://doi.org/10.2478/s11535-007-0042-x CrossRefGoogle Scholar
  7. Chauhan A, Fazlurrahman JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 48:95–113.  https://doi.org/10.1007/s12088-008-0010-9 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen SH, Aitken MD (1999) Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33(3):435–439.  https://doi.org/10.1021/es9805730 CrossRefGoogle Scholar
  9. Đokić L, Narancic T, Nikodinovic-Runic J, Bajkic S, Vasiljevic B (2011) Four Bacillus sp. soil isolates capable of degrading phenol, toluene, biphenyl, naphthalene, and other aromatic compounds exhibit different aromatic catabolic potentials. Arch Biol Sci 63(4):1057–1067.  https://doi.org/10.2298/ABS1104057D CrossRefGoogle Scholar
  10. Guzik U, Hupert-Kocurek K, Sitnik M, Wojcieszyńska D (2013) High activity catechol 1,2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis, cis-muconic acid production. Antonie Van Leeuwenhoek 103(6):297–1307.  https://doi.org/10.1007/s10482-013-9910-8 CrossRefGoogle Scholar
  11. Haritash AK. Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15.  https://doi.org/10.1016/j.jhazmat.2009.03.137 CrossRefPubMedGoogle Scholar
  12. Harvey RG (1996) Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycycl Aromat Compd 9(1–4):1–23.  https://doi.org/10.1080/10406639608031196 CrossRefGoogle Scholar
  13. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC monographs on the evaluation of carcinogenic risks to humans, no. 92. International Agency for Research on Cancer, Lyon. https://www.ncbi.nlm.nih.gov/books/NBK321712/
  14. Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189(2):464–472.  https://doi.org/10.1128/JB.01310-06 CrossRefPubMedGoogle Scholar
  15. Kot-Wasik A, Dbrowska D, Namieśnik J (2004) Photodegradation and biodegradation study of benzo(a)pyrene in different liquid media. J Photochem Photobiol A 168(1):109–115.  https://doi.org/10.1016/j.jphotochem.2004.05.023 CrossRefGoogle Scholar
  16. Lily MK, Bahuguna A, Dangwal K, Garg V (2009) Degradation of benzo[a]pyrene by a novel strain Bacillus subtilis BMT4i (MTCC 9447). Braz J Microbiol 40(4):884–892.  https://doi.org/10.1590/S1517-83822009000400020 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lu XY, Zhang T, Fang HH (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biotechnol 89:1357–1371.  https://doi.org/10.1007/s00253-010-3072-7 CrossRefPubMedGoogle Scholar
  18. Ma YL, Lu W, Wan LL, Luo N (2014) Elucidation of fluoranthene degradative characteristics in a newly isolated Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 175:1294–1305.  https://doi.org/10.1007/s12010-014-1347-7 CrossRefPubMedGoogle Scholar
  19. Meena SS, Sharma RS, Gupta P, Karmakar S, Aggarwal KK (2016) Isolation and identification of Bacillus megaterium YB3 from an effluent contaminated site efficiently degrades pyrene. J Basic Microbiol 56(4):369–378.  https://doi.org/10.1002/jobm.201500533 CrossRefPubMedGoogle Scholar
  20. Mohamed ME, Al-Dousary M, Hamzah RY, Fuchs G (2006) Isolation and characterization of indigenous thermophilic bacteria active in natural attenuation of bio-hazardous petrochemical pollutants. Int Biodeterior Biodegradation 58(3–4):213–223.  https://doi.org/10.1016/j.ibiod.2006.06.022 CrossRefGoogle Scholar
  21. Mohandass R, Rout P, Jiwal S, Sasikala C (2012) Biodegradation of benzo[a]pyrene by the mixed culture of Bacillus cereus and Bacillus vireti isolated from the petrochemical industry. J Environ Biol 33:985–989PubMedGoogle Scholar
  22. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2004) Degradation of benzo[a]pyrene by Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 70(1):340–345.  https://doi.org/10.1128/AEM.70.1.340-345.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Müller R, Antranikian G, Maloney S, Sharp R (1998) Thermophilic degradation of environmental pollutants. In: Antranikian G (ed) Biotechnology of extremophiles. Advances in biochemical engineering/biotechnology. Springer, Berlin, p 155–169CrossRefGoogle Scholar
  24. Peng H, Yin H, Deng J, Ye JS, Chen SN, He BY, Zhang N (2012) Biodegradation of benzo[a]pyrene by Arthrobacter oxydans B4. Pedosphere 22(4):554–561.  https://doi.org/10.1016/S1002-0160(12)60040-X CrossRefGoogle Scholar
  25. Ping L, Zhang C, Zhang C, Zhu Y, He H, Wu M, Tang T, Li Z, Zhao H (2014) Isolation and characterization of pyrene and benzo[a]pyrene-degrading Klebsiella pneumonia PL1 and its potential use in bioremediation. Appl Microbiol Biotechnol 98(8):3819–3828.  https://doi.org/10.1007/s00253-013-5469-6 CrossRefPubMedGoogle Scholar
  26. Rentz JA, Alvarez PJJ, Schnoor JL (2008) Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ Pollut 151(3):669–677.  https://doi.org/10.1016/j.envpol.2007.02.018 CrossRefPubMedGoogle Scholar
  27. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M. Lopez de Leon A, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jørgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM (2004) Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol 5(10):R77.  https://doi.org/10.1186/gb-2004-5-10-r77 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sawulski P, Clipson N, Doyle E (2014) Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. Biodegradation 25(6):835–847.  https://doi.org/10.1007/s10532-014-9703-4 CrossRefPubMedGoogle Scholar
  29. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309.  https://doi.org/10.3390/ijerph6010278 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sho M, Hamel C, Greer CW (2004) Two distinct gene clusters encode pyrene degradation in Mycobacterium sp. strain S65. FEMS Microbiol Ecol 48(2):209–220.  https://doi.org/10.1016/j.femsec.2004.01.011 CrossRefPubMedGoogle Scholar
  31. Sinchaikul S, Sookkheo B, Topanuruk S, Juan HF, Phutrakul S, Chen ST (2002) Bioinformatics, functional genomics, and proteomics study of Bacillus sp. J Chromatogr B 771(1–2):261–287.  https://doi.org/10.1016/S1570-0232(02)00054-5 CrossRefGoogle Scholar
  32. Sowada J, Schmalenberger A, Ebner I, Luch A, Tralau T (2014) Degradation of benzo[a]pyrene by bacterial isolates from human skin. FEMS Microbiol Ecol 88(1):129–139.  https://doi.org/10.1111/1574-6941.12276 CrossRefPubMedGoogle Scholar
  33. Unkefer CJ, London RE, Whaley TW, Daub GH (1983) Carbon-13 and proton NMR analysis of isotopically labeled benzo[a]pyrenes. J Am Chem Soc 105(4):733–735.  https://doi.org/10.1021/ja00342a010 CrossRefGoogle Scholar
  34. US EPA (1984). List of the sixteen PAHs with highest carcinogenic effect. IEA Coal Research, London. https://books.google.com.mx/books
  35. Viamajala S, Peyto BM, Richards LA, Petersen JN (2007) Solubilization, solution equilibria, and biodegradation of PAH’s under thermophilic conditions. Chemosphere 66(6):1094–1106.  https://doi.org/10.1016/j.chemosphere.2006.06.059 CrossRefPubMedGoogle Scholar
  36. Wang XB, Chi CQ, Nie Y, Tang YQ, Tan Y, Wu G, Wu XL (2011) Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol 102(17):7755–7761.  https://doi.org/10.1016/j.biortech.2011.06.009 CrossRefPubMedGoogle Scholar
  37. Wojcieszyńska D, Guzik U, Greń I, Perkosz M, Hupert-Kocurek K (2011) Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems. World J Microbiol Biotechnol 27(4):805–811CrossRefPubMedGoogle Scholar
  38. Zeinali M, Vossoughi M, Ardestani SK (2007) Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons. Lett Appl Microbiol 45(6):622–628.  https://doi.org/10.1111/j.1472-765X.2007.02241.x CrossRefPubMedGoogle Scholar
  39. Zeinali M, Vossoughi M, Ardestani SK (2008) Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere 72(6):905–909.  https://doi.org/10.1016/j.chemosphere.2008.03.038 CrossRefPubMedGoogle Scholar
  40. Zhang J, Zhang X, Liu J, Li R, Shen B (2012) Isolation of a thermophilic bacterium. Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway. Bioresour Technol 124:83–89.  https://doi.org/10.1016/j.biortech.2012.08.044 CrossRefPubMedGoogle Scholar
  41. Zheng C, He J, Wang Y, Wang M, Huang Z (2011) Hydrocarbon degradation and bioemulsifier production by thermophilic Geobacillus pallidus strains. Bioresour Technol 102(19):9155–9161.  https://doi.org/10.1016/j.biortech.2011.06.074 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Joseph Guevara-Luna
    • 1
  • Patricia Alvarez-Fitz
    • 2
  • Elvira Ríos-Leal
    • 3
  • Macdiel Acevedo-Quiroz
    • 4
  • Sergio Encarnación-Guevara
    • 5
  • Ma Elena Moreno-Godinez
    • 2
  • Mildred Castellanos-Escamilla
    • 6
  • Jeiry Toribio-Jiménez
    • 1
  • Yanet Romero-Ramírez
    • 1
  1. 1.Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Unidad Académica de Ciencias Químico BiológicasUniversidad Autónoma de GuerreroChilpancingoMexico
  2. 2.Laboratorio de Toxicología y Salud AmbientalUniversidad Autónoma de Guerrero, MéxicoChilpancingoMexico
  3. 3.Departamento de Biotecnología y BioingenieríaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexicoMexico
  4. 4.Centro de Investigaciones QuímicasUniversidad Autónoma de MorelosCuernavacaMexico
  5. 5.Laboratorio de proteómica, Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  6. 6.Biochemistry and Molecular Biology DepartmentUniversity of CalgaryCalgaryCanada

Personalised recommendations