Advertisement

Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a d-psicose-3-epimerase gene from Agrobacterium tumefaciens for d-allulose production

  • Peizhou YangEmail author
  • Xingxing Zhu
  • Zhi Zheng
  • Dongdong Mu
  • Shaotong Jiang
  • Shuizhong Luo
  • Yun Wu
  • Minrui Du
Original Paper

Abstract

d-Allulose as a low-energy and special bioactive monosaccharide sugar is essential for human health. In this study, the d-psicose-3-epimerase gene (DPEase) of Agrobacterium tumefaciens was transferred into thermotolerant Kluyveromyces marxianus to decrease the production cost of d-allulose and reduce the number of manufacturing procedures. The cell regeneration of K. marxianus and cyclic catalysis via whole-cell reaction were investigated to achieve the sustainable application of K. marxianus and the consumption of residual d-fructose. Results showed that DPEase, encoding a 33 kDa protein, could be effectively expressed in thermotolerant K. marxianus. The engineered K. marxianus produced 190 g L−1 d-allulose with 750 g L−1 d-fructose as a substrate at 55 °C within 12 h. Approximately 100 g of residual d-fructose was converted into 34 g of ethanol, and 15 g of the engineered K. marxianus cells was regenerated after fermentation at 37 °C for 21 h. The purity of d-allulose of more than 90% could be obtained without isolating it from d-allulose and d-fructose mixture through residual d-fructose consumption. This study provided a valuable pathway to regenerate engineered K. marxianus cells and achieve cyclic catalysis for d-allulose production.

Keywords

Kluyveromyces marxianus d-Psicose-3-epimerase d-Allulose Agrobacterium tumefaciens Thermotolerant 

Notes

Funding

This study was funded by Key Science and Technology Program of Anhui Province (No.1604a0702001).

Supplementary material

11274_2018_2451_MOESM1_ESM.tif (560 kb)
Fig. S1 Skeletal structure of the constructed pRS42H-dpe plasmid (TIF 560 KB)
11274_2018_2451_MOESM2_ESM.tif (1.2 mb)
Fig. S2 Effect of hygromycin concentrations on the growth of K. marxianus on the solid YPD plate (TIF 1223 KB)
11274_2018_2451_MOESM3_ESM.doc (58 kb)
Supplementary material 3 (DOC 57 KB)
11274_2018_2451_MOESM4_ESM.doc (66 kb)
Supplementary material 4 (DOC 65 KB)

References

  1. Chen J, Zhu Y, Fu G, Song Y, Jin Z, Sun Y (2016) High-level intra- and extra-cellular production of d-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. J Ind Microbiol Biotechnol 43:1577–1591CrossRefPubMedGoogle Scholar
  2. Chen X, Wang W, Xu J, Yuan Z, Yuan T, Zhang Y (2017) Production of d-psicose from d-glucose by co-expression of d-psicose 3-epimerase and xylose isomerase. Enzyme Microb Technol 105:18–23CrossRefPubMedGoogle Scholar
  3. Chung MY, Oh DK, Lee KW (2012) Hypoglycemic health benefits of d-psicose. J Agric Food Chem 60:863–869CrossRefPubMedGoogle Scholar
  4. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34CrossRefPubMedGoogle Scholar
  5. Gombert AK, Madeira JV, Cerdan ME, Gonzalez-Siso MI (2016) Kluyveromyces marxianus as a host for heterologous protein synthesis. Appl Microbiol Biotechnol 100:6193–6208CrossRefPubMedGoogle Scholar
  6. Gu L, Zhang J, Liu B, Wu C, Du G, Chen J (2013) High-level extracellular production of d-psicose-3-epimerase with recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioprocess Biosyst Eng 36:1767–1777CrossRefPubMedGoogle Scholar
  7. He W, Jiang B, Mu W, Zhang T (2016a) Production of d-allulose with d-psicose 3-epimerase expressed and displayed on the surface of Bacillus subtilis spores. J Agric Food Chem 64:7201–7207CrossRefPubMedGoogle Scholar
  8. He W, Mu W, Jiang B, Yan X, Zhang T (2016b) Food-grade expression of d-psicose 3-epimerase with tandem repeat genes in Bacillus subtilis. J Agric Food Chem 64:5701–5707CrossRefPubMedGoogle Scholar
  9. Jia M, Mu W, Chu F, Zhang X, Jiang B, Zhou LL, Zhang T (2014) A d-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for d-psicose production: cloning, expression, purification, and characterization. Appl Microbiol Biotechnol 98:717–725CrossRefPubMedGoogle Scholar
  10. Kim HJ, Lim BC, Yeom SJ, Kim YS, Kim D, Oh DK (2010) Roles of Ile66 and Ala107 of d-psicose 3-epimerase from Agrobacterium tumefaciens in binding O6 of its substrate, d-fructose. Biotechnol Lett 32:113–118CrossRefPubMedGoogle Scholar
  11. Lertwattanasakul N, Kosaka T, Hosoyama A, Suzuki Y, Rodrussamee N, Matsutani M (2015) Genetic basis of the highly efficient yeast Kluyveromyces marxianus: complete genome sequence and transcriptome analyses. Biotechnol Biofuels 8:1–14CrossRefGoogle Scholar
  12. Li Z, Li Y, Duan S, Liu J, Yuan P, Nakanishi H, Gao XD (2015) Bioconversion of d-glucose to d-psicose with immobilized d-xylose isomerase and d-psicose 3-epimerase on Saccharomyces cerevisiae spores. J Ind Microbiol Biotechnol 42:1117–1128CrossRefPubMedGoogle Scholar
  13. Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour Technol 98:3367–3374CrossRefPubMedGoogle Scholar
  14. Martinez O, Sanchez A, Font X, Barrena R (2017) Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces marxianus for producing value-added aroma compounds via solid-state fermentation. J Cleaner Prod 158:8–17CrossRefGoogle Scholar
  15. Men Y, Zhu Y, Zeng Y, Izumori K, Sun Y, Ma Y (2014a) Co-expression of d-glucose isomerase and d-psicose 3-epimerase: development of an efficient one-step production of d-psicose. Enzyme Microb Technol 64–65:1–5CrossRefPubMedGoogle Scholar
  16. Men Y, Zhu Y, Zeng Y, Izumori K, Sun Y, Ma Y (2014b) Co-expression of d-glucose isomerase and d-psicose 3-epimerase: development of an efficient one-step production of d-psicose. Enzyme Microb Technol 64:1–5CrossRefPubMedGoogle Scholar
  17. Nakamura T, Tanaka S, Hirooka K, Toyoshima T, Kawai N, Tamiya T (2011) Anti-oxidative effects of d-allose, a rare sugar, on ischemia-reperfusion damage following focal cerebral ischemia in rat. Neurosci Lett 487:103–106CrossRefPubMedGoogle Scholar
  18. Nonklang S, Abdel-Banat BM, Cha-aim K, Moonjai N, Hoshida H, Limtong S (2008) High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74:7514–7521CrossRefPubMedPubMedCentralGoogle Scholar
  19. Park CS, Kim T, Hong SH, Shin KC, Kim KR, Oh DK (2016a) d-Allulose production from d-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing d-allulose 3-epimerase Flavonifractor plautii. PLoS ONE 11:e0160044CrossRefPubMedPubMedCentralGoogle Scholar
  20. Park CS, Park CS, Shin KC, Oh DK (2016b) Production of d-psicose from d-fructose by whole recombinant cells with high-level expression of d-psicose 3-epimerase from Agrobacterium tumefaciens. J Biosci Bioeng 121:186–190CrossRefPubMedGoogle Scholar
  21. Rugthaworn P, Murata Y, Machida M, Apiwatanapiwat W, Hirooka A, Thanapase W (2014) Growth inhibition of thermotolerant yeast, Kluyveromyces marxianus, in hydrolysates from cassava pulp. Appl Biochem Biotechnol 173:1197–1208CrossRefPubMedGoogle Scholar
  22. Signori L, Passolunghi S, Ruohonen L, Porro D, Branduardi P (2014) Effect of oxygenation and temperature on glucose-xylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Fact 13:1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Peizhou Yang
    • 1
    Email author
  • Xingxing Zhu
    • 1
  • Zhi Zheng
    • 1
  • Dongdong Mu
    • 1
  • Shaotong Jiang
    • 1
  • Shuizhong Luo
    • 1
  • Yun Wu
    • 1
  • Minrui Du
    • 1
  1. 1.College of Food Science and Engineering, Anhui Key Laboratory of Intensive Processing of Agricultural ProductsHefei University of TechnologyHefeiChina

Personalised recommendations