Advertisement

Bacterial alginate production: an overview of its biosynthesis and potential industrial production

  • Viviana Urtuvia
  • Nataly Maturana
  • Fernando Acevedo
  • Carlos Peña
  • Alvaro Díaz-Barrera
Review

Abstract

Alginate is a linear polysaccharide that can be used for different applications in the food and pharmaceutical industries. These polysaccharides have a chemical structure composed of subunits of (1–4)-β-d-mannuronic acid (M) and its C-5 epimer α-l-guluronic acid (G). The monomer composition and molecular weight of alginates are known to have effects on their properties. Currently, these polysaccharides are commercially extracted from seaweed but can also be produced by Azotobacter vinelandii and Pseudomonas spp. as an extracellular polymer. One strategy to produce alginates with different molecular weights and with reproducible physicochemical characteristics is through the manipulation of the culture conditions during fermentation. This mini-review provides a comparative analysis of the metabolic pathways and molecular mechanisms involved in alginate polymerization from A. vinelandii and Pseudomonas spp. Different fermentation strategies used to produce alginates at a bioreactor laboratory scale are described.

Keywords

Alginate Azotobacter vinelandii Pseudomonas spp. 

Notes

Acknowledgements

We acknowledge the financial support from CONICYT-Chile (Project PCCI40039 and FONDECYT 1170896).

References

  1. Ahumada-Manuel CL, Guzmán J, Peña C et al (2017) The signalling protein MucG negatively affects the production and the molecular mass of alginate in Azotobacter vinelandii. Appl Microbiol Biotechnol 101:1521–1534CrossRefGoogle Scholar
  2. Annison G, Couperwhite I (1986) Effect of limiting substrate concentration, growth rate aeration on alginate composition and production by Azotobacter vinelandii in continuous culture. Food Hydrocoll 1(2):101–111CrossRefGoogle Scholar
  3. Castillo T, Heinzle E, Peifer S et al (2013) Oxygen supply strongly influences metabolic fluxes, the production of poly(3-hydroxybutyrate) and alginate, and the degree of acetylation of alginate in Azotobacter vinilandii. Process Biochem 48(7):995–1003CrossRefGoogle Scholar
  4. Clementi F (1997) Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol 17(4):327–361CrossRefGoogle Scholar
  5. Conti E, Flaibani A, O’Regan M et al (1994) Alginate from Pseudomonas fluorescens and P. putida: production and properties. Microbiol 140:1125–1132CrossRefGoogle Scholar
  6. Díaz-Barrera A, Peña C, Galindo E (2007) The oxygen transfer rate influences the molecular mass of the alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 76:903–910CrossRefGoogle Scholar
  7. Díaz-Barrera A, Silva P, Berrios J et al (2010) Manipulating the molecular weight of alginate produced by Azotobacter vinelandii in continuous cultures. Bioresour Technol 101:9405–9408CrossRefGoogle Scholar
  8. Díaz-Barrera A, Soto E, Altamirano C (2012) alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures. J Ind Microbiol Biotechnol 39:613–621CrossRefGoogle Scholar
  9. Díaz-Barrera A, Gutierrez J, Martínez F et al (2014a) Production of alginate by Azotobacter vinelandii grown at two bioreactor scales under oxygen-limited conditions. Bioprocess Biosyst Eng 37:1133–1140CrossRefGoogle Scholar
  10. Díaz-Barrera A, Martínez F, Guevara F et al (2014b) Evaluation of gene expression and alginate production in response to oxygen transfer in continuous culture of Azotobacter vinelandii. PLoS ONE 9(8):e105993CrossRefGoogle Scholar
  11. Díaz-Barrera A, Maturana N, Pacheco-Leyva I et al (2017) Different responses in the expression of alginases, alginate polymerase and acetylation genes during alginate production by Azotobacter vinelandii under oxygen-controlled conditions. J Ind Microbiol Biotechnol 44:1041–1051CrossRefGoogle Scholar
  12. Ertesvåg H (2015) Alginate-modifying enzymes: biological roles and biotechnological uses. Front Microbiol 6(523):2–8Google Scholar
  13. Ertesvåg H, Sletta H, Senneset M et al (2017) Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library. BMC Genomics 18:11–13CrossRefGoogle Scholar
  14. Fata Moradali M, Donati I, Sims IM et al (2015) Alginate polymerization and modification are linked in Pseudomonas aeruginosa. MBio 6(3):e00453-15CrossRefGoogle Scholar
  15. Fischer M, Gebhard F, Hammer T et al (2017) Microbial alginate dressings show improved binding capacity for pathophysiological factors in chronic wounds compared to commercial alginate dressings of marine origin. J Biomater Appl 31(9):1267–1276CrossRefGoogle Scholar
  16. Flores C, Moreno S, Espín G et al (2013) Expression of alginases and alginate polymerase genes in response to oxygen, and their relationship with the alginate molecular weight in Azotobacter vinelandii. Enzyme Microb Technol 53(2):81–91CrossRefGoogle Scholar
  17. Flores C, Díaz-Barrera A, Martínez F et al (2015) Role of oxygen in polymerization and depolymerization of alginate produced by Azotobacter vinelandii. J Chem Technol Biotechnol 90:356–365CrossRefGoogle Scholar
  18. Franklin MJ, Ohman DE (1996) Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J Bacteriol 178(8):2186–2195CrossRefGoogle Scholar
  19. Franklin MJ, Nivens DE, Weadge JT et al (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel and Psl. Front Microbiol 2(167):1–15Google Scholar
  20. Gacesa P (1998) Bacterial alginate biosynthesis-recent progress and future prospects. J Microbiol 144:1133–1143CrossRefGoogle Scholar
  21. Galindo E, Peña C, Núñez C et al (2007) Molecular and bioengineering strategies to improve alginate and polyhydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 6(7):1–16Google Scholar
  22. Gaytán I, Peña C, Núñez C et al (2012) Azotobacter vineladii lackig the Na+-NQR activity: a potential source for producing alginates with improved properties and at high yield. World J Microbiol Biotechnol 28:2731–2740CrossRefGoogle Scholar
  23. Gimmestad M, Ertesvåg H, Heggeset TM et al (2009) Charaterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in Cyst germination. J Bacteriol 191(15):4845–4853CrossRefGoogle Scholar
  24. Gómez-Pazarín K, Flores C, Castillo T et al (2016) Molecular weight and viscosifying power of alginate produced in Azotobacter vinelandii cultures in shake flasks under low power input. J Chem Technol Biotechnol 91:1485–1492CrossRefGoogle Scholar
  25. Guo W, Song C, Kong M et al (2011) Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 92:791–801CrossRefGoogle Scholar
  26. Hacking A, Taylor I, Jarman T et al (1983) Alginate biosynthesis by Pseudomonas mendocina. J Gen Microbiol 129:3473–3480Google Scholar
  27. Hay ID, Rehman ZU, Moradali MF et al (2013) Microbial alginate production, modification and its applications. Microb Biotechnol 6:637–650Google Scholar
  28. Hay ID, Wang Y, Moradali MF et al (2014) Genetics and regulation of bacterial alginate production. Appl Environ Microbiol 16(10):2997–3011Google Scholar
  29. Hoefer D, Schnepf J, Hammer T et al (2015) Biotechnologically produced microbial alginate dressings show enhanced gel forming capacity compared to commercial alginate dressings of marine origin. J Mater Sci 26:162Google Scholar
  30. Høidal HK, Glaerum Svanem BI, Gimmestad M et al (2000) Mannuronan C-5 epimerases and cellular differentiation of Azotobacter vinelandii. Environ Microbiol 2(1):27–38CrossRefGoogle Scholar
  31. Hoskisson PA, Hobbs G (2005) Continuous culture-making a comeback? Microbiol 151:3153–3159CrossRefGoogle Scholar
  32. Keiski CL, Yip P, Robinson H et al (2007) Expression, purification, cristallization and preliminary X-ray analysis of Pseudomonas fluorescens AlgK. Acta Crystallogr F 63(Pt5):415–418CrossRefGoogle Scholar
  33. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefGoogle Scholar
  34. Lozano E, Galindo E, Peña C (2011) Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non-oxygen-limited conditions. Microb Cell Fact 10:13CrossRefGoogle Scholar
  35. Ma LY, Chi ZM, Li J et al (2008) Overexpression of alginate lyase of Pseudoalteromonas elyakovii in Escherichia coli, purification, and characterization of the recombinant alginate lyase. World J Microbiol Biotechnol 24:89–96CrossRefGoogle Scholar
  36. Maleki S, Maerk M, Hrudikova R et al (2017) New insights into Pseudomonas fluorescens alginate biosynthesis relevant for the establishment of an efficient production process for microbial alginates. New Biotechnol 37:2–8CrossRefGoogle Scholar
  37. Mejía-Ruíz H, Guzmán J, Moreno S et al (1997) The Azotobacter vinelandii alg8 and alg44 genes are essential for alginate synthesis and can be transcribed from an algD-independent promoter. Gene 199:271–277CrossRefGoogle Scholar
  38. Müller JM, Alegre RM (2007) Alginate production by Pseudomonas mendocina in a stirred draft fermenter. World J Microbiol Biotechnol 23:691–695CrossRefGoogle Scholar
  39. Núñez C, León R, Guzmán J et al (2000) Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 182(23):6550–6556CrossRefGoogle Scholar
  40. Oelze J (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence. FEMS Microbiol Rev 24:321–333CrossRefGoogle Scholar
  41. Pacheco-Leyva I, Guevara F, Díaz-Barrera A (2016) Alginate biosynthesis in Azotobacter vinelandii overview of molecular mechanisms in connection with the oxygen availability. Inter J Polym Sci. doi: 10.1155/2016/2062360 Google Scholar
  42. Peña C, Campos N, Galindo E (1997) Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510–515CrossRefGoogle Scholar
  43. Peña C, Trujillo-Roldán M, Galindo E (2000) Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzyme Microb Technol 27:390–398CrossRefGoogle Scholar
  44. Peña C, Galindo E, Büchs J (2010) The viscosifying power, degree of acetylation and molecular mass of the alginate produced by Azotobacter vinelandii in shake flasks are determined by the oxygen transfer rate. Process Biochem 46(1):290–297CrossRefGoogle Scholar
  45. Peña C, Galindo E, Büchs J (2011) The viscosifyng power, degree of acetylation and molecular mass of the alginate produced by Azotobacter vinelandii in shake flasks are determined by the oxygen transfer rate. Process Biochem 46:290–297CrossRefGoogle Scholar
  46. Ramphal R, Pier GB (1985) Role of Pseudomonas aeruginosa mucoid exopolysaccharide in adherence to tracheal cell. Infect Inmmun 47(1):1–4Google Scholar
  47. Raza W, Yang W, Jun Y et al (2012) Optimization and characterization of a polysaccharide produced by Pseudomonas fluorescens WR-1 and its antioxidant activity. Carbohydr Polym 90:921–929CrossRefGoogle Scholar
  48. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592CrossRefGoogle Scholar
  49. Rehm BH, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48(3):281–288CrossRefGoogle Scholar
  50. Remminghorst U, Rehm BHA (2006) In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Mirobiol 72(1):298–305CrossRefGoogle Scholar
  51. Reyes C, Peña C, Galindo E (2003) Reproducing shake flasks performance in stirred fermenters: production of alginates by Azotobacter vinelandii. J Biotechnol 105:189–198CrossRefGoogle Scholar
  52. Sabra W, Zeng AP, Lünsdorf H et al (2000) Effect of oxygen on formation and structure of Azotobacter vinelandii and its role in protecting nitrogenase. Appl Environ Microbiol 66(9):4037–4044CrossRefGoogle Scholar
  53. Segura D, Cruz T, Espín G (2003) Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-beta-hydroxybutyrate synthesis. Arch Microbiol 179(6):437–443CrossRefGoogle Scholar
  54. Sengha S, Anderson A, Hacking A et al (1989) The production of alginate by Pseudomonas mendocina in batch and continuous culture. J Gen Microbiol 135:795–804Google Scholar
  55. Shinabarger D, Berry A, May TB et al (1991) Purification and characterization of phosphomannose isomerase-guanosine diphospho-D-mannose pyrophosphorylase. J Biol Chem 266(4):2080–2088Google Scholar
  56. Skjåk-Bræk G, Grasdalen H, Larsen B (1986) Monomer sequence and acetylation patter in some bacterial alginates. Carbohydr Res 154(1):239–250CrossRefGoogle Scholar
  57. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309CrossRefGoogle Scholar
  58. Tøndervik A, Klinkenberg G, Aarstad OA et al (2010) Isolationof mutant alginate lyases with cleavage specificity for di-guluronic acid linkages. J Biol Chem 285(46):35284–35292CrossRefGoogle Scholar
  59. Trujillo-Roldán M, Moreno S, Espín G et al (2004) The roles of oxygen and alginate-lyase in determining the molecular weight of alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 63:742–747CrossRefGoogle Scholar
  60. Vázquez-Ponce F, Higuera-Llantén S, Pavlov MS et al (2017) Alginate overproduction and biofilm formation by psychrotolerat Pseudomonas mandalli depend on temperature in Artarctic marine sediments. Electron J Biotechnol 28:27–34CrossRefGoogle Scholar
  61. Xiao L, Han F, Yang Z et al (2006) A novel alginate lyase with high activity on acetylated alginate of Pseudomonas aeruginosa FRD1 from Pseudomonas sp. QD03. World J Microbiol Biotechnol 22:81–88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Viviana Urtuvia
    • 1
  • Nataly Maturana
    • 1
  • Fernando Acevedo
    • 1
  • Carlos Peña
    • 2
  • Alvaro Díaz-Barrera
    • 1
  1. 1.Escuela de Ingeniería BioquímicaPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations