Advertisement

Sulfur oxidation by Achromobacter xylosoxidans strain wsp05 reveals ecological widening over which thiotrophs are distributed

  • Kapilesh JadhavEmail author
  • Indrani Jadhav
Original Paper
  • 105 Downloads

Abstract

Achromobacter xylosoxidans is a versatile bacterium known for its ability to degrade aromatic compounds. However, its ability to oxidize sulfur compounds for electron and energy source is not reported much. In the present work, the Gram-negative bacterium Achromobacter xylosoxidans strain wsp05 isolated from a waste stabilization ponds (WSPs) system was studied for its ability to oxidize reduced sulfur compounds. The strain was able to oxidize thiosulfate and sodium sulfite. To observe the effect of physicochemical parameters on the rate of sulfur oxidation, strain wsp05 was grown in thiosulfate (20 mM) containing minimal salt medium at varied pH, temperature and ammonium and phosphate ions concentration. Maximum thiosulfate oxidation was observed at 30 °C with initial pH of 7–7.2. The strain was characterized using universal 16S rRNA gene primers revealing high similarity (> 99%) with Achromobacter xylosoxidans NBRC 15126T belonging to β-proteobacteria. In the present study, we investigated the sulfur oxidation properties of the Achromobacter xylosoxidans strain wsp05, which revealed an ecological and phylogenetic widening over which the thiotrophs are distributed.

Graphical Abstract

Keywords

Achromobacter xylosoxidans Thiosulfate Sulfur oxidation Waste stabilization ponds 

Notes

Acknowledgements

The authors extend their gratitude to the Public Health Department (PHE) and Town and Country Planning Department, Ujjain, M.P. for their technical assistance during the sampling procedure and for providing relevant literature of WSP system.

References

  1. Andrea G, Stephan S (2003) Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field. Syst Appl Microbiol 26(3):445–452. doi: 10.1078/072320203322497482 CrossRefGoogle Scholar
  2. Brock CS, Leavitt PR, Schindler DE, Johnson SP, Morre JW (2006) Spatial variability of stable isotopes and fossil pigments in surface sediments of Alaskan coastal lakes: constraints on quantitative estimates of past Salmon abundance. Limnol Oceanogr 51:1637–1647. doi: 10.4319/lo.2006.51.4.1637 CrossRefGoogle Scholar
  3. Brüser T, Lens PNL, Trüper HG (2000) The biological sulfur cycle. In: Lens PNL (ed) Environmental technologies to treat sulfur pollution. IWA Publishing, London, pp 47–86Google Scholar
  4. Cappuccino JG, Sherman N (2005) Microbiology: a laboratory manual. Pearson Education, New YorkGoogle Scholar
  5. Caspersen MB, Bennett K, Christensen HEM (2000) Expression and characterization of recombinant Rhodocyclus tenuis high potential iron-sulfur protein. Protein Exp Purif 19:259–264CrossRefGoogle Scholar
  6. Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E (1996) Oxidation of thiosulfate by a new bacterium Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987CrossRefGoogle Scholar
  7. Davidson MS, Summers AO (1983) Wide-host-range plasmids function in the genus Thiobacillus. Appl Environ Microbiol 46:565–572Google Scholar
  8. Deb C, Stackebrandt E, Pradella S, Saha A, Roy P (2004) Phylogenetically diverse new sulfur chemolithotrophs of alpha-proteobacteria isolated from Indian soils. Curr Microbiol 48:452–458. doi: 10.1007/s00284-003-4250-y CrossRefGoogle Scholar
  9. Deveryshetty J, Phale PS (2010) Biodegradation of phenanthrene by Alcaligenes sp. strain PPH: partial purification and characterization of 1-hydroxy-2-naphthoic acid hydroxylase. FEMS Microbiol Lett 311:93–101. doi: 10.1111/j.1574-6968.2010.02079.x CrossRefGoogle Scholar
  10. Eccleston M, Kelly DP (1978) Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J Bacteriol 134:718–727Google Scholar
  11. Essam T, Amin MA, El Tayeb O, Mattiasson B, Guieysse B (2010) Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J Hazard Mater 173:783–788. doi: 10.1016/j.jhazmat.2009.09.006 CrossRefGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int J org Evolution 39:783–791CrossRefGoogle Scholar
  13. Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19(96):56–60CrossRefGoogle Scholar
  14. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea FEMS. Microbiol Rev 33(6):999–1043. doi: 10.1111/j.1574-6976.2009.00187 Google Scholar
  15. Ghosh W, Bagchi A, Mandal S, Dam B, Roy P (2005) Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic β-proteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int J Syst Evol Microbiol 55:1779–1787. doi: 10.1099/ijs.0.63595-0 CrossRefGoogle Scholar
  16. Ghosh W, Alam M, Roy C, Pyne P, George A et al (2013) Genome implosion elicits host-confinement in Alcaligenaceae: evidence from the comparative genomics of Tetrathiobacter kashmirensis, a pathogen in the making. PLoS ONE 8(5):e64856. doi: 10.1371/journal.pone.0064856 CrossRefGoogle Scholar
  17. Ikenaga M, Muraoka Y, Toyota K, Kimura M (2002) Community structure of the microbiota associated with nodal roots of rice plants along with the growth stages: estimation by PCR-RFLP analysis. Biol Fert Soils 36:397–404CrossRefGoogle Scholar
  18. Ingledew WJ (1982) Thiobacilus ferrooxidans: the bioenergetics of acidiphilic chemolithotrophs. Biochim Biophys Acta 683:89–117CrossRefGoogle Scholar
  19. Jadhav K, Jadhav I, Billore S (2012) Carbon source variability and metal tolerance in newly isolated strain Thiobacillus WSP07. J Microbiol Biotechnol Res 2(1):99–107Google Scholar
  20. Jaime HC, Francois S, Peer B (2016) Reconstruction, analysis and visualization of phylogenomic data. Mol Biol Evol. doi: 10.1093/molbev/msw046 Google Scholar
  21. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  22. Kappler U (2010) Bacterial sulfite-oxidizing enzymes. Biochim Biophys Acta 1807(1):1–10. doi: 10.1016/j.bbabio.2010.09.004 Google Scholar
  23. Kelly DP, Harrison AP (1989) Genus Thiobacillusbeijerinck. In: Staley JT, Bryant MP, Pfennig N, Holt GJ (eds) Bergey’s manual of systematic bacteriology, vol 3. The Williams and Wilkins Co, Baltimore, pp 193–217Google Scholar
  24. Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–890CrossRefGoogle Scholar
  25. Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulphur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107CrossRefGoogle Scholar
  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  27. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  28. Lane DJ, Stahl DA, Olsen GJ, Heller DJ, Pace NR (1985) Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol 163:75–81Google Scholar
  29. Mukhopadhyaya PN, Chirajyoti D, Chandrajit L, Pradosh R (2000) A soxA gene, encoding a diheme cytochrome c and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182(15):4278–4287CrossRefGoogle Scholar
  30. Okabe T, Sugita K, Satoh H (2005) Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Appl Environ Microbiol 71(2):2520–2529. doi: 10.1128/AEM.71.5.2520-2529.2005 CrossRefGoogle Scholar
  31. Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG (2003) Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein Sox YZ with the dimanganese Sox B protein. Biochem Biophys Res Commun 312(4):1011–1018. doi: 10.1016/j.bbrc.2003.11.021 CrossRefGoogle Scholar
  32. Saitou N, Nei M (1987) Theneighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  34. Silver M, Dinardo O (1981) Factors affecting oxidation of thiosalts by Thiobacilli. Appl Environ Microbiol 41(6):1301–1309Google Scholar
  35. Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfansulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22:845. doi: 10.1007/s10532-010-9442-0 CrossRefGoogle Scholar
  36. Sorbo B (1953) Crystallinerhodanese I. Purification and physicochemical examination. Acta Chem Scand 7:1129–1136CrossRefGoogle Scholar
  37. SPSS (2008) Statistics for windows, version 17.0. SPSS Inc, ChicagoGoogle Scholar
  38. Strnad H, Ridl H, Paces J, Kolar M, Vlcek C, Paces V (2011) Complete genome sequence of the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. J Bacteriol 193(3):791–792. doi: 10.1128/JB.01299-10 CrossRefGoogle Scholar
  39. Takeuchi TL, Suzuki I (1994) Effect of pH on silfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxode as a possible substrat. J Bacteriol 176(3):913–916CrossRefGoogle Scholar
  40. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefGoogle Scholar
  41. Truper HG, Pfennig N (1966) Sulfur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulfate sulfur in Thiocapsa floridana and Chromatium sp. Antonie von Leeuwenhoek. J Microbiol Serol 32:261–276Google Scholar
  42. Wächtershäuser G (2000) Origin of life: life as we don’t know it. Science 289(5483):1307–1308. doi: 10.1126/science.289.5483.1307 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Studies in BotanyVikram University UjjainUjjainIndia
  2. 2.School of Life SciencesJaipur National UniversityJaipurIndia

Personalised recommendations