Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Propionate metabolism and diversity of relevant functional genes by in silico analysis and detection in subsurface petroleum reservoirs

  • 317 Accesses


Propionate is a common metabolic intermediate occurring in environmental samples including petroleum reservoirs. Available microbial genomes were obtained from the NCBI database and analyzed in silico by hmmscan to check three metabolic pathways of propionate production in petroleum reservoir systems. The succinate pathway was the dominant one while the other two (lactate and 1,2-propanediol pathways) contributed less to the formation of propionate according to the Hidden Markov Model calculation. The mmdA gene encoding methylmalonyl-CoA decarboxylase was used as a biomarker gene to detect the diversity of microbes involved in the propionate formation in Jiangsu oil reservoirs. The mmdA gene clone library showed that microbes affiliated within the genus of Archaeoglobus, Thermococcus, Anaerobaculum, as well as more than ten other genera were the potential microorganisms involved in the production of propionate. Meanwhile, as the biomarker genes involved in the other two propionate-producing pathways, the functional genes of lcdA and pduP were tested with PCR amplification, but no positive results were observed in Jiangsu oil reservoirs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Anand S, Kaur H, Mande SS (2016) Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens. Front Microbiol 7:1945. doi:10.3389/fmicb.2016.01945

  2. Barth T, Borgund AE, Riis M (1990) Organic acids in reservoir waters—relationship with inorganic ion composition and interactions with oil and rock. Org Geochem 16:489–496

  3. Bo L, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ (2015) Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 5:1–13

  4. Callaghan AV, Morris BE, Pereira IA, Mclnerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, Young LY, Zylstra GJ, Wawrik B (2012) The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113

  5. Carothers WW, Kharaka YK (1978) Aliphatic acid anions in oil-field waters—implications for origin of gas. AAPG Bulletin 62:2441–2453

  6. Chang YL, Miriam L, Loren H, Olga C, Tijana G, Matt N, Alex C, Hope T, Cheng JF, Susan L, Cliff H, Lynne G, Sam P, Natalia I, Galina O, Amrita P, Amy C, Krishna P, Konstantinos M, Konstantinos L, Thomas B, Anne F, Manfred R, Birte A, Markus G, John C, Tanja W, James B, Jonathan A, Victor M, Philip Nikos C, Hans P, Alla L (2011) Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21 T). Stand Genom Sci 5:97–111

  7. Chaubey A, Parshad R, Koul S, Taneja SC, Qazi GN (2006) Enantioselectivity modulation through immobilization of Arthrobacter sp. lipase: kinetic resolution of fluoxetine intermediate. J Mol Catal B 42:39–44

  8. Cui X, Bianchi TS, Jaeger JM, Smith RW (2016) Biospheric and petrogenic organic carbon flux along southeast Alaska. Earth Planet Sci Lett 452:238–246

  9. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

  10. Fisher JB (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim Cosmochim Acta 51:2459–2468

  11. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54:427–443

  12. Hahnke S, Maus I, Wibberg D, Tomazetto G, Pühler A, Klocke M, Schlüter A (2015) Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab-scale biogas reactor. J Biotechnol 193:34–36

  13. Hahnke S, Langer T, Koeck DE, Klocke M (2016) Description of Proteiniphilum saccharofermentans sp. nov. Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. Int J Syst Evol Microbiol 66:1466–1475. doi:10.1099/ijsem.0.000902

  14. Hetzel M, Brock M, Selmer T, Pierik AJ, Golding BT, Buckel W (2003) Acryloyl-CoA reductase from Clostridium propionicum. FEBS J 270:902–910

  15. Hino T, Kuroda S (1993) Presence of lactate dehydrogenase and lactate racemase in Megasphaera elsdenii grown on glucose or lactate. Appl Environ Microbiol 59:255–259

  16. Hosseini E, Grootaert C, Verstraete W, Wiele TVD (2011) Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev 69:245–258

  17. Huang W, Keller W (1970) Dissolution of rock-forming silicate minerals in organic acids-simulated first-stage weathering of fresh mineral surfaces. Am Mineral 55:2076–2094

  18. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

  19. Keller M, Braun FJ, Dirmeier R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164:390–395

  20. Khelifi N, Ali OA, Roche P, Grossi V, Brochier-Armanet C, Valette O, Ollivier B, Dolla A, Hirschler-Réa A (2014) Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus. ISME J 8:2153–2166

  21. Klenk H-P, Rebecca AC, Tomb J-F, Owen W, Karen N, Karen AK, Robert D, Michelle G, Erin H, Jeremy P, Delwood L, Anthony K, David G, Nikos K, Robert F, John Q, Lee N, Granger S, Steven G, Ewen K, Brian D, Venter J-C (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–370

  22. Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol 101:7789–7796

  23. Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417:507–514

  24. Lee YJ, Wagner ID, Brice ME, Kevbrin VV, Mills GL, Romanek CS, Wiegel J (2005) Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles Life Under Extreme Cond 9:375–383

  25. Li X-X, Liu J-F, Zhou L, Mbadinga SM, Yang S-Z, Gu J-D, Mu B-Z (2017) Diversity and composition of sulfate-reducing microbial communities based on genomic DNA and RNA transcription in production water of high temperature and corrosive oil reservoir. Front Microbiol 8:1011. doi:10.3389/fmicb.2017.01011

  26. López-López A, Pujalte MJ, Benlloch S, Mata-Roig M, Rosselló-Mora R, Garay E, Rodríguez-Valera F (2002) Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the alpha-Proteobacteria. Int J Syst Evol Microbiol 52:1277–1283. doi:10.1099/ijs.0.01928-0

  27. MacGowan DB, Surdam RC (1988) Difunctional carboxylic acid anions in oilfield waters. Org Geochem 12:245–259

  28. Macy JM, Probst I (1979) The biology of gastrointestinal bacteroides. Annu Rev Microbiol 33:561–594

  29. Marchandin H, Teyssier C, Campos J, Jean-Pierre H, Roger F, Gay B, Carlier JP, Jumas-Bilak E (2010) Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. Int J Syst Evol Microbiol 60:1271–1279

  30. Mbadinga SM, Wang L-Y, Zhou L, Liu J-F, Gu J-D, Mu B-Z (2011) Microbial communities involved in anaerobic degradation of alkanes. Int Biodeterior Biodegrad 65:1–13. doi:10.1016/j.ibiod.2010.11.009

  31. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

  32. Miroshnichenko ML, Hippe H, Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91. doi:10.1007/s007920100175

  33. Nepomnyashchaya YN, Slobodkina GB, Baslerov RV, Chernyh NA, Bonchosmolovskaya EA, Netrusov AI, Slobodkin AI (2012) Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III). Int J Syst Evolut Microbiol 62:613–617

  34. Ogg CD, Patel BKC (2009) Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia. Int J Syst Evol Microbiol 59:1100–1107

  35. Ogg CD, Greene AC, Patel BK (2010) Thermovenabulum gondwanense sp. nov., a thermophilic anaerobic Fe(III)-reducing bacterium isolated from microbial mats thriving in a Great Artesian Basin bore runoff channel. Int J Syst Evol Microbiol 60:1079–1084

  36. Ommedal H, Torsvik T (2007) Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate-reducing bacterium isolated from an oil-reservoir model column. Int J Syst Evol Microbiol 57:2865–2869

  37. Poirier S, Quéméner DL, Madigou C, Bouchez T, Chapleur O (2016) Anaerobic digestion of biowaste under extreme ammonia concentration: identification of key microbial phylotypes. Bioresour Technol 207:92–101

  38. Prieto L, Esteban M, Salinas J, Adot JM, Arlandis S, Peri L, Cozar JM (2014) Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. Int J Syst Evol Microbiol 64:1244–1251

  39. Rees GN, Patel BK, Grassia GS, Sheehy AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154

  40. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335

  41. Saxena R, Anand P, Saran S, Isar J, Agarwal L (2010) Microbial production and applications of 1, 2-propanediol. Indian J Microbiol 50:2–11

  42. Seewald JS (2001) Model for the origin of carboxylic acids in basinal brines. Geochim Cosmochim Acta 65:3779–3789

  43. Sekiguchi Y, Imachi H, Susilorukmi A, Muramatsu M, Ohashi A, Harada H, Hanada S, Kamagata Y (2006) Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges. Int J Syst Evol Microbiol 56:1621–1629

  44. Singh S, Kumari B, Mishra S (2012) Microbial degradation of alkanes. In: Microbial degradation of xenobiotics. Springer, Berlin, pp 439–469

  45. So CM, Young LY (1999) Initial reactions in anaerobic alkane degradation by a sulfate reducer, Strain AK-01. Appl Environ Microbiol 65:5532–5540

  46. Srinivas A, Rahul K, Ramaprasad EV, Ch S, Chv R (2012) Rhodovulum bhavnagarense sp. nov., a phototrophic alphaproteobacterium isolated from a pink pond. Int J Syst Evol Microbiol 62:2528–2532

  47. Stams AJ, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

  49. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R (2011) Regulation of inflammation by short chain fatty acids. Nutrients 3:858–876

  50. Wang L-Y, Duan R-Y, Liu J-F, Yang S-Z, Gu J-D, Mu B-Z (2012) Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures. Biogeosciences 9:4645

  51. Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV (2016) Methanogenic paraffin degradation proceeds via alkane addition to fumarate by ‘Smithella’ spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 18:2604–2619. doi:10.1111/1462-2920.13374

  52. Widdel F, Pfennig N (1981) Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch Microbiol 129:401–402

  53. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276. doi:10.1016/S0958-1669(00)00209-3

  54. Yu Y, Breitbart M, Mcnairnie P, Rohwer F (2006) FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics 7:213–219

Download references


The National Natural Science Foundation of China (No. 41530318) and Shanghai Fundamental Research Program (No. 15JC1401400), and the Fundamental Research Funds for the Central Universities of China (No. 222201717017).

Author information

Correspondence to Bo-Zhong Mu.

Ethics declarations

Conflict of interest

Authors declare that they have no interest conflict.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3097 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Mbadinga, S.M., Zhou, L. et al. Propionate metabolism and diversity of relevant functional genes by in silico analysis and detection in subsurface petroleum reservoirs. World J Microbiol Biotechnol 33, 182 (2017).

Download citation


  • Fermentation
  • In silico analysis
  • mmdA gene
  • Propionate formation
  • Petroleum reservoir