Streptomyces sp. AT37 isolated from a Saharan soil produces a furanone derivative active against multidrug-resistant Staphylococcus aureus

  • El Hadj Driche
  • Nasserdine Sabaou
  • Christian Bijani
  • Abdelghani Zitouni
  • Frédéric Pont
  • Florence Mathieu
  • Boubekeur Badji
Original Paper


A novel actinobacterium strain, named AT37, showed a strong activity against some multidrug-resistant Staphylococcus aureus, including methicillin-resistant S. aureus MRSA ATCC 43300, other clinical isolates of MRSA and vancomycin resistant S. aureus VRSA S1. The strain AT37 was isolated from a Saharan soil by a dilution agar plating method using chitin-vitamin agar medium supplemented with rifampicin. The morphological and chemical studies indicated that this strain belonged to the genus Streptomyces. Its 16S rRNA gene sequence was determined and a database search indicated that it was closely associated with the type strain of Streptomyces novaecaesareae NBRC 13368T with 99.6% of similarity. However, the comparison of the morphological and the physiological characteristics of the strain with those of the nearest species showed significant differences. The strain AT37 secreted the antibiotic optimally during mid-stationary phase of growth. One active compound (AT37-1) was extracted from the culture broth with dichloromethane, separated on silica gel plates and purified by HPLC. Based on spectroscopic analysis of UV–Visible, infrared, and 1H and 13C NMR spectra and spectrometric analysis, the chemical structure of the compound AT37-1 was identified as 5-[(5E,7E,11E)-2,10-dihydroxy-9,11-dimethyl-5,7,11-tridecatrien-1-yl]-2-hydroxy-2-(1-hydroxyethyl)-4-methyl-3(2H)-furanone. Minimum inhibitory concentrations and minimum biofilm inhibitory concentration (MBIC50) of this compound showed significant activity against multidrug-resistant S. aureus with 15–30 and 10–15 μg/mL, respectively.


Streptomyces Saharan soil Furanone derivative Antibiofilm Multidrug-resistant Staphylococcus aureus 



This work was gratefully supported by the «Comité mixte Franco-Algérien de l’Accord Programme TASSILI (PHC No. 15 MDU 932; Campus France: 33000WC)».

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Supplementary material

11274_2017_2265_MOESM1_ESM.doc (80 kb)
Fig. S1 HPLC purification process for the active compound secreted by Streptomyces sp. AT37. (a) First HPLC injection of the active fraction ATa (Rf = 0.8 in ethyl-acetate–methanol, 100–15 v/v) resulting from the TLC silica gel. (b) Final purification of the active compound AT37-1 after re-injection. Column, ZORBAX SD C18; continuous linear gradient system, 10–100 % methanol in water; flow rate, 1.2 mL/min; detection, 220 nm (DOC 79 KB)


  1. Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227CrossRefGoogle Scholar
  2. Aouiche A, Meklat A, Sabaou N, Zitouni A, Bijani C, Mathieu F, Lebrihi A (2012) Saccharothrix sp. PAL54, a new chloramphenicol-producing strain isolated from a Saharan soil. World J Microb Biot 42:943–951CrossRefGoogle Scholar
  3. Banskota AH, McAlpine JB, Sorensen D, Aouidate M, Piraee M, Alarco AM, Omura S, Shiomi K, Farnet CM, Zazopoulos E (2006) Isolation and identification of three new 5-alkenyl-3,3(2 H)-furanones from two Streptomyces species using a genomic screening approach. J Antibiot 59:168–176CrossRefGoogle Scholar
  4. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA (1964) Rapid identification between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. J Appl Microbiol 12:421–423Google Scholar
  5. Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395CrossRefGoogle Scholar
  6. Boubetra D, Sabaou N, Zitouni A, Bijani C, Lebrihi A, Mathieu F (2013a) Taxonomy and chemical characterization of new antibiotics produced by Saccharothrix SA198 isolated from a Saharan soil. Microbiol Res 168:223–230CrossRefGoogle Scholar
  7. Boubetra D, Zitouni A, Bouras N, Mathieu F, Lebrihi A, Schumann P, Spröer C, Klenk HP, Sabaou N (2013b) Saccharothrix hoggarensis sp. nov., an actinomycete isolated from Saharan soil. Int J Syst Evol Microbiol 63:549–553CrossRefGoogle Scholar
  8. Brackman G, Coenye T (2015) Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 21:5–11CrossRefGoogle Scholar
  9. Clardy J, Fischbach MA, Walsh CT (2006) New antibiotics from bacterial natural products. Nat Biotechnol 24:1541–1550CrossRefGoogle Scholar
  10. Coates ARM, Hu Y (2007) Novel approaches to developing new antibiotics for bacterial infections. Br J Pharmacol 152:1147–1154CrossRefGoogle Scholar
  11. Driche EH, Belghit S, Bijani C, Zitouni A, Sabaou N, Mathieu F, Badji B (2015) A new Streptomyces strain isolated from Saharan soil produces di-(2-ethylhexyl) phthalate, a metabolite active against methicillin-resistant Staphylococcus aureus. Ann Microbiol 65:1341–1350CrossRefGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int J org Evolution 39:783–791CrossRefGoogle Scholar
  13. Fujiwara K, Tsukamoto H, Izumikawa M, Hosoya T, Kagaya N, Takagi M, Yamamura H, Masayuki H, Kazuo SY, Takayuki Doi J (2015) Total synthesis and structure determination of JBIR-108-A 2-hydroxy-2-(1-hydroxyethyl)-2,3-dihydro-3(2H) furanone isolated from Streptomyces gramineus IR087Pi-4. Org Chem 80:114–132CrossRefGoogle Scholar
  14. Goodfellow M, Whitman WB, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (2012) Phylum XXVI. Actinobacteria phyl. nov. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, 2nd ed, V 5, part A. Springer, New York, pp 1–2024CrossRefGoogle Scholar
  15. Gravel H, Duim B, Van Duijkeren E, Heederik D, Wagenaar JA (2011) Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301:630–634CrossRefGoogle Scholar
  16. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509CrossRefGoogle Scholar
  17. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102CrossRefGoogle Scholar
  18. Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams S (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams &Wilkins, BaltimoreGoogle Scholar
  19. Jensen SO, Lyon BR (2009) Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4:565–582CrossRefGoogle Scholar
  20. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelium is a fluctuating characteristic. J Bacteriol 57:141–145Google Scholar
  21. Kämpfer P (2012) Genus I. Streptomyces Waksman and Henrici 1943. In: Goodfellow M et al. (eds) Bergey’s manual of systematic bacteriology, 5th edn. Springer, New York, pp 1446–1467Google Scholar
  22. Kelly KL, Judd DB (1976) Color. Universal language and dictionary of names (National bureau of standards, special publication 440. US Department of Commerce, WashingtonCrossRefGoogle Scholar
  23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  25. Kuehl R, Al-Bataineh S, Gordon O, Luginbuehl R, Otto M, Textor M, Landmann R (2009) Furanone at subinhibitory concentrations enhances staphylococcal biofilm formation by luxS repression. Antimicrob Agents Chemother 53:4159–4166CrossRefGoogle Scholar
  26. Kwiecinski J, Na M, Jarneborn A, Jacobsson G, Peetermans M, Verhamme P, Jin T (2016) Tissue plasminogen activator coating on implant surfaces reduces Staphylococcus aureus biofilm formation. Appl Environ Microbiol 82:394–401CrossRefGoogle Scholar
  27. Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot C, Vanncanneyt M, Swings J, Kim S-B, Liu Z, Chun J, Tamura T, Oguchi A, Kikuchi T, Kikuchi H, Nishii T, Tsuji K, Yamaguchi Y, Tase A, Takahashi M, Sakane T, Suzuki KI, Hatano K (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek 101:73–104CrossRefGoogle Scholar
  28. Lechevalier HA, Lechevalier MP (1970) Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. In: Prauser H (ed) The Actinomycetales. VEB Gustav Fischer Verlag, Jena, pp 393–404Google Scholar
  29. Lechevalier MP, de Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  30. Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol 38:471Google Scholar
  31. Locci R (1989) Streptomycetes and related genera. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2451–2508Google Scholar
  32. Lönn-Stensrud J, Landin MA, Benneche T, Petersen FC, Aamdal-Scheie A (2009) Furanones, potential agents for preventing Staphylococcus epidermidis biofilm infections? J Antimicrob Chemother 63:309–316CrossRefGoogle Scholar
  33. Meklat A, Bouras N, Zitouni A, Mathieu F, Lebrihi A, Schumann P, Spröer C, Klenk HP, Sabaou N (2013) Actinopolyspora mzabensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria. Int J Syst Evol Microbiol 63:3787–3792CrossRefGoogle Scholar
  34. Minnikin DE, Patel PV, Alshamahony L, Goodfellow M (1977) Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27:104–117CrossRefGoogle Scholar
  35. Morel C, Mossialos E (2010) Stoking the antibiotic pipeline. BMJ 340:1115–1118CrossRefGoogle Scholar
  36. Naik G, Deshpande S (2011) A study on surgical site infections caused by Staphylococcus aureus with a special search for methicillin-resistant isolates. J Clin Diagn Res 5:502–508Google Scholar
  37. Nithya C, Devi MG, Pandian SK (2011) A novel compound from the marine Bacillus pumilus S6-15 inhibits biofilm formation in gram-positive and gram-negative species. Biofouling 27:519–528CrossRefGoogle Scholar
  38. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp Jan 30:2437Google Scholar
  39. Oki T, Tenmyo O, Tomatsu K, Kamei H (1990) Pradimicins A, B and C: new antifungal antibiotic. II. In vitro and in vivo biological activities. J Antibiot 43:763–770CrossRefGoogle Scholar
  40. Pantosti A, Sanchini A, Monaco M (2007) Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol 2:323–334CrossRefGoogle Scholar
  41. Rebiahia SA, Abdelouahid DE, Rahmoun M, Abdelali S, Azzaoui H (2011) Emergence of vancomycin-resistant Staphylococcus aureus identified in the Tlemcen university hospital (North-West Algeria). Med Maladies Infect 41:646–651CrossRefGoogle Scholar
  42. Ren D, Bedzyk LA, Setlow P, England DF, Kjelleberg S, Thomas SM, Ye RW, Wood TK (2004) Differential gene expression to investigate the effect of (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis. Appl Environ Microbiol 70:4941–4949CrossRefGoogle Scholar
  43. Sabaou N, Boudjella H, Bennadji A, Mostefaoui A, Zitouni A, Lamari L, Bennadji H, Lefebvre G, Germain P (1998) Les sols des oasis du Sahara algérien, source d’actinomycètes rares producteurs d’antibiotiques. Sécheresse 9:147–153Google Scholar
  44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  45. Sharma KD, Saini RP, Karthik L (2014) Current trends of antibiotic resistance in clinical isolates of Staphylococcus aureus. Front Biol 9:287–290CrossRefGoogle Scholar
  46. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  47. Solecka J, Zajko J, Postek M, Rajnisz A (2012) Biologically active secondary metabolites from actinomycetes. Cent Eur J Biol 7:373–390Google Scholar
  48. Stiefel P, Rosenberg U, Schneider J, Stefan M, Maniura-Weber K, Ren Q (2016) Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system. Appl Microbiol Biotechnol 100:4135–4145CrossRefGoogle Scholar
  49. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  50. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  51. Trizna E, Latypova L, Kurbangalieva A, Bogachev MI, Kayumov A (2016) 2(5H)-Furanone derivatives as inhibitors of staphylococcal biofilms. Bio Nano Sci 6:423–426Google Scholar
  52. Von Nussbaum F, Brands M, Hinzen B, Weigand S, Habich D (2006) Antibacterial natural products in medicinal chemistry exodus or revival? Angew Chem Int Edn Engl 45:5072–5129CrossRefGoogle Scholar
  53. Yekkour A, Meklat A, Bijani C, Toumatia O, Errakhi R, Lebrihi A, Mathieu F, Zitouni A, Sabaou N (2015) A novel hydroxamic acid-containing antibiotic produced by a Saharan soil-living Streptomyces strain. Lett Appl Microbiol 60:589–596CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • El Hadj Driche
    • 1
    • 2
  • Nasserdine Sabaou
    • 1
  • Christian Bijani
    • 3
  • Abdelghani Zitouni
    • 1
  • Frédéric Pont
    • 4
  • Florence Mathieu
    • 5
  • Boubekeur Badji
    • 1
  1. 1.Laboratoire de Biologie des Systèmes Microbiens (LBSM)Ecole Normale SupérieureKoubaAlgeria
  2. 2.Département de Biologie, Faculté des Sciences de la Nature et de la VieUniversité Hassiba Benbouali de ChlefChlefAlgeria
  3. 3.Laboratoire de chimie de coordination (LCC), CNRSUniversité de Toulouse, UPS, INPT, LCCToulouseFrance
  4. 4.Proteomics Group, INSERM UMR1037Centre de Recherches en Cancérologie de Toulouse (CRCT)ToulouseFrance
  5. 5.Laboratoire de Génie Chimique, LGC, UMR 5503 (CNRS/INPT/UPS)Université de ToulouseToulouseFrance

Personalised recommendations