Skip to main content
Log in

The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fluoroquinolines are broad spectrum fourth generation antibiotics. Some of the Fluoroquinolines exhibit antifungal activity. We are reporting the potential mechanism of action of a fluoroquinoline antibiotic, moxifloxacin on the growth, morphogenesis and biofilm formation of the human pathogen Candida albicans. Moxifloxacin was found to be Candidacidal in nature. Moxifloxacin seems to inhibit the yeast to Hyphal morphogenesis by affecting signaling pathways. It arrested the cell cycle of C. albicans at S phase. Docking of moxifloxacin with predicted structure of C. albicans DNA Topoisomerase II suggests that moxifloxacin may bind and inhibit the activity of DNA Topoisomerase II in C. albicans. Moxifloxacin could be used as a dual purpose antibiotic for treating mixed infections caused by bacteria as well as C. albicans. In addition chances of developing moxifloxacin resistance in C. albicans are less considering the fact that moxifloxacin may target multiple steps in yeast to hyphal transition in C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. BioChemistry 53(10):1565–1574

    Article  CAS  Google Scholar 

  • Anand RS, Somasundaram S, Doble M, Paramasivan CN (2011) Docking studies on novel analogues of 8 methoxy Fluoroquinolines against GyrA mutants ofMycobacterium tuberculosis. BMC Struct Biol 11(1):1

    Article  Google Scholar 

  • Baillie GS, Douglas LJ (2000a) Matrix polymers of Candida albicans biofilms to antifungal agents. J Antimicrob Chemother 46:397–403

    Article  CAS  Google Scholar 

  • Baillie GS, Douglas LJ (2000b) Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46(3):397–403

    Article  CAS  Google Scholar 

  • Bailly S, Maubon D, Fournier P, Pelloux H, Schwebel C, Chapuis C, Foroni L, Cornet M, Timsit JF (2016) Impact of antifungal prescription on relative distribution and susceptibility of Candida spp.—trends over 10 years. J Infect 72(1):103–111

    Article  Google Scholar 

  • Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J 20(17):4753–4761

    Article  CAS  Google Scholar 

  • Chan PF, Srikannathasan V, Huang J et al (2015) Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat Commun 6:10048

    Article  CAS  Google Scholar 

  • Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA (2001) Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 80:903–908

    Article  CAS  Google Scholar 

  • Chang W, Li Y, Zhang L, Cheng A, Lou H (2012) Retigeric acid B attenuates the virulence of Candida albicansvia inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. PloS ONE 7(7):e41624

    Article  CAS  Google Scholar 

  • Deren YT, Özdek S, Kalkanci A, Akyürek N, Hasanreisoglu B (2010) Comparison of antifungal efficacies of moxifloxacin, liposomal amphotericin B, and combination treatment in experimental Candida albicans endophthalmitis in rabbits. Can J Microbiol 56(1):1–7

    Article  CAS  Google Scholar 

  • Fung-Tomc J, Minassian B, Kolek B, Washo T, Huczko E, Bonner D (2000) In vitro antibacterial spectrum of a new broad-spectrum 8-methoxy fluoroquinolone, gatifloxacin. J Antimicrob Chemother 45(4):437–446

    Article  CAS  Google Scholar 

  • Jabra-Rizk MA, Falkler WA, Meiller TF (2004) Fungal biofilms and drug resistance. Emerg Infect Dis 10:14–19

    Article  CAS  Google Scholar 

  • Kalkanci A, Dizbay M, Sari N, Yalcin B, Fidan I, Arman D, Kustimur S (2010) Fluconazole, caspofungin, voriconazole in combination with amphotericin B. Open Med 5(2):194–197

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  Google Scholar 

  • Kumar A, Bora U (2014) Molecular docking studies of curcumin natural derivatives with DNA topoisomerase I and II-DNA complexes. Interdiscip Sci 6(4):285–291

    Article  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Thornton JM (2001) PROCHECK: validation of protein structure coordinates. In: International tables of crystallography, vol. F. Crystallography of biological macromolecules. Kluwer Academic Publishers, The Netherlands, pp 722–725

    Google Scholar 

  • León C, Ruiz-Santana S, Saavedra P, Galván B, Blanco A, Castro C, Balasini C, Utande-Vázquez A, de Molina FJG, Blasco-Navalproto MA, López MJ (2009) Usefulness of the “Candida score” for discriminating between Candida colonization and invasive candidiasis in non-neutropenic critically ill patients: a prospective multicenter study. Crit Care Med 37(5):1624–1633

    Article  Google Scholar 

  • Maraki S, Lionakis S, Ntaoukakis M, Barbounakis E, Ntasis E, Kofteridis DP, Samonis G (2011) Effects of levofloxacin, moxifloxacin and prulifloxacin on murine gut colonization by Candida albicans. Med Mycol 49(4):419–423

    Article  CAS  Google Scholar 

  • Matoba AY (2012) Fungal keratitis responsive to moxifloxacin monotherapy. Cornea 31(10):1206

    Article  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  • Nakajima R, Kitamura A, Someya K, Tanaka M, Sato K (1995) In vitro and in vivo antifungal activities of DU-6859a, a fluoroquinolone, in combination with amphotericin B and fluconazole against pathogenic fungi. Antimicrob Agents Chemother 39(7):1517–1521

    Article  CAS  Google Scholar 

  • Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350

    Article  CAS  Google Scholar 

  • Ozdek SC, Miller D, Flynn PM, Flynn HW Jr (2006) In vitro antifungal activity of the fourth generation Fluoroquinolines against Candidaisolates from human ocular infections. Ocul Immunol Inflamm 14(6):347–351

    Article  CAS  Google Scholar 

  • Pfaller MA, Grant C, Morthland V, Rhine-Chalberg J (1994) Comparative evaluation of alternative methods for broth dilution susceptibility testing of fluconazole against Candida albicans. J Clin Microbiol 32(2):506–509

    CAS  Google Scholar 

  • Raut JS, Shinde RB, Chauhan NM, Mohan Karuppayil S (2013) Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling, 29(1):87–96

    Article  CAS  Google Scholar 

  • Routh MM, Raut JS, Karuppayil SM (2011) Dual properties of anticancer agents: an exploratory study on the in vitro anti-Candida properties of thirty drugs. Chemotherapy 57:372–380

    Article  CAS  Google Scholar 

  • Samonis G, Kofteridis DP, Maraki S, Alegakis D, Mantadakis E, Papadakis JA, Falagas M (2005) Levofloxacin and moxifloxacin increase human gut colonization by Candida species. Antimicrob Agents Chemother 49(12):5189–5189

    Article  CAS  Google Scholar 

  • Shalit I, Horev-Azaria L, Fabian I et al (2002) Immunomodulatory and protective effects of moxifloxacin against Candida albicans—induced bronchopneumonia in mice injected with cyclophosphamide. Antimicrobial Agents Chemother 46(8):2442–2449

    Article  CAS  Google Scholar 

  • Shinde RB, Raut JS, Karuppayil SM (2012) Biofilm formation by Candida albicans on various prosthetic materials and its fluconazole sensitivity: a kinetic study. Mycoscience 53:220–226

    Article  CAS  Google Scholar 

  • Stergiopoulou T, Meletiadis J, Sein T, Papaioannidou P, Tsiouris I, Roilides E, Walsh TJ (2009) Comparative pharmacodynamic interaction analysis between ciprofloxacin, moxifloxacin and levofloxacin and antifungal agents against Candida albicans and Aspergillus fumigatus. J Antimicrob Chemother 63(2):343–348

    Article  CAS  Google Scholar 

  • Zore GB, Thakre AD, Jadhav S, Karuppayil SM (2011) Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine 18(13):1181–1190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AKJ and SMK is thankful to Prof. Pandit Vidyasagar, Vice Chancellor, SRTM University and UGC SAP DRS II University Grant Commission, Govt. of India for the support. WNG and RP are thankful to the Department of Biotechnology Research and development grant, Savitribai Phule Pune University, Pune, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankunny Mohan Karuppayil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, A., Bansode, B., Phule, D. et al. The antibacterial agent, moxifloxacin inhibits virulence factors of Candida albicans through multitargeting. World J Microbiol Biotechnol 33, 96 (2017). https://doi.org/10.1007/s11274-017-2264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2264-z

Keywords

Navigation