Lactic acid production from submerged fermentation of broken rice using undefined mixed culture

  • Luiza Varela Nunes
  • Fabiane Fernanda de Barros Correa
  • Pedro de Oliva Neto
  • Cassia Roberta Malacrida Mayer
  • Bruna Escaramboni
  • Tania Sila Campioni
  • Natan Roberto de Barros
  • Rondinelli Donizetti Herculano
  • Eutimio Gustavo Fernández NúñezEmail author
Original Paper


The present work aimed to characterize and optimize the submerged fermentation of broken rice for lactic acid (LA) production using undefined mixed culture from dewatered activated sludge. A microorganism with amylolytic activity, which also produces LA, Lactobacillus amylovorus, was used as a control to assess the extent of mixed culture on LA yield. Three level full factorial designs were performed to optimize and define the influence of fermentation temperature (20–50 °C), gelatinization time (30–60 min) and broken rice concentration in culture medium (40–80 g L−1) on LA production in pure and undefined mixed culture. LA production in mixed culture (9.76 g L−1) increased in sixfold respect to pure culture in optimal assessed experimental conditions. The optimal conditions for maximizing LA yield in mixed culture bioprocess were 31 °C temperature, 45 min gelatinization time and 79 g L−1 broken rice concentration in culture medium. This study demonstrated the positive effect of undefined mixed culture from dewatered activated sludge to produce LA from culture medium formulated with broken rice. In addition, this work establishes the basis for an efficient and low-cost bioprocess to manufacture LA from this booming agro-industrial by-product.


Activated sludge Broken rice Lactic acid Mixed culture Lactobacillus amylovorus Three-level factorial design 



Authors are grateful to the technical staff of Wastewater Treatment Station “Limoeiro” (Presidente Prudente-SP, Brazil) for donation of dewatered activated sludge. The first author thanks Brazilian National Council for Scientific and Technological Development (CNPq/Brazil) for Scientific Initiation Scholarship (PIBIC-2015/UNESP/34044). The corresponding author acknowledges his lovely wife, Relma, and daughters, Giovanna and Paola, for the inspiration to write this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Abdel-Rahman MA, Sonomoto K (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 236:176–192. doi: 10.1016/j.jbiotec.2016.08.008 CrossRefGoogle Scholar
  2. Anto H, Trivedi UB, Patel KC (2006) Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresour Technol 97:1161–1166. doi: 10.1016/j.biortech.2005.05.007 CrossRefGoogle Scholar
  3. Augusto EFP, Moraes AM, Piccoli RAM et al (2010) Nomenclature and guideline to express the amount of a membrane protein synthesized in animal cells in view of bioprocess optimization and production monitoring. Biologicals 38:105–112. doi: 10.1016/j.biologicals.2009.07.005 CrossRefGoogle Scholar
  4. Castillo Martinez FA, Balciunas EM, Salgado JM et al (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83. doi: 10.1016/j.tifs.2012.11.007 CrossRefGoogle Scholar
  5. Chen WP, Chang YC (1984) Production of high-fructose rice syrup and high-protein rice flour from broken rice. J Sci Food Agric 35:1128–1135. doi: 10.1002/jsfa.2740351012 CrossRefGoogle Scholar
  6. Chen L, Yang X, Raza W et al (2011) Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Bioresour Technol 102:3900–3910. doi: 10.1016/j.biortech.2010.11.126 CrossRefGoogle Scholar
  7. Chu-Ky S, Pham TH, Bui KLT et al (2016) Simultaneous liquefaction, saccharification and fermentation at very high gravity of rice at pilot scale for potable ethanol production and distillers dried grains composition. Food Bioprod Process 98:79–85. doi: 10.1016/j.fbp.2015.10.003 CrossRefGoogle Scholar
  8. Daful AG, Haigh K, Vaskan P, Görgens JF (2016) Environmental impact assessment of lignocellulosic lactic acid production: integrated with existing sugar mills. Food Bioprod Process 99:58–70. doi: 10.1016/j.fbp.2016.04.005 CrossRefGoogle Scholar
  9. De Man J, Rogosa M, Sharpe ME (1972) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135CrossRefGoogle Scholar
  10. Dhaouadi H, M’Henni F (2008) Textile mill effluent decolorization using crude dehydrated sewage sludge. Chem Eng J 138:111–119. doi: 10.1016/j.cej.2007.05.052 CrossRefGoogle Scholar
  11. Federici F, Fava F, Kalogerakis N, Mantzavinos D (2009) Valorisation of agro-industrial by-products, effluents and waste: concept, opportunities and the case of olive mill waste waters. J Chem Technol Biotechnol 84:895–900. doi: 10.1002/jctb.2165 CrossRefGoogle Scholar
  12. Freshney R (2010) Culture of animal cells: a manual of basic technique and specialized applications. 6th edn, Wiley, HobokenCrossRefGoogle Scholar
  13. Galvín RM, López JMC, Mellado JMR (2009) Chemical characterization of biosolids from three Spanish WWTPs: transfer of organics and metallic pollution from urban wastewater to biosolids. Clean - Soil, Air, Water 37:52–59. doi: 10.1002/clen.200800154 CrossRefGoogle Scholar
  14. Gey M, Klosser P, Becker U (1990) Characterization of biotechnological processes and products using high-performance liquid chromatography (HPLC): VI. Determination of lactic acid and short-chain carboxylic acids C1- C5. Acta Biotechnol 10:459–468CrossRefGoogle Scholar
  15. Kleerebezem R, van Loosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi: 10.1016/j.copbio.2007.05.001 CrossRefGoogle Scholar
  16. Liang S, McDonald AG, Coats ER (2014) Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag 34:2022–2027. doi: 10.1016/j.wasman.2014.07.009 CrossRefGoogle Scholar
  17. Liang S, Gliniewicz K, Mendes-Soares H et al (2015a) Comparative analysis of microbial community of novel lactic acid fermentation inoculated with different undefined mixed cultures. Bioresour Technol 179:268–274. doi: 10.1016/j.biortech.2014.12.032 CrossRefGoogle Scholar
  18. Liang S, McDonald AG, Coats ER (2015b) Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manag 45:51–56. doi: 10.1016/j.wasman.2015.02.004 CrossRefGoogle Scholar
  19. Liang S, Gliniewicz K, Gerritsen AT, McDonald AG (2016) Analysis of microbial community variation during the mixed culture fermentation of agricultural peel wastes to produce lactic acid. Bioresour Technol 208: 7–12. doi: 10.1016/j.biortech.2016.02.054 CrossRefGoogle Scholar
  20. Liu H, Wan H, Xu S et al (2016) Influence of extrusion of corn and broken rice on energy content and growth performance of weaning pigs. Anim Sci J. doi: 10.1111/asj.12578 Google Scholar
  21. Maiti S, Sarma SJ, Brar SK et al (2016) Agro-industrial wastes as feedstock for sustainable bio-production of butanol by Clostridium beijerinckii. Food Bioprod Process 98:217–226. doi: 10.1016/j.fbp.2016.01.002 CrossRefGoogle Scholar
  22. Mark Hsieh C, Yang FC, Iannotti EL (1999) The effect of soy protein hydrolyzates on fermentation by Lactobacillus amylovorus. Process Biochem 34:173–179. doi: 10.1016/S0032-9592(98)00081-8 CrossRefGoogle Scholar
  23. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  24. Moin A, Ali TM, Hasnain A (2016) Effect of succinylation on functional and morphological properties of starches from broken kernels of Pakistani Basmati and Irri rice cultivars. Food Chem 191:52–58. doi: 10.1016/j.foodchem.2015.03.119 CrossRefGoogle Scholar
  25. Nakamura LK (1981) Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Syst Bacteriol 31:56–63CrossRefGoogle Scholar
  26. Pompeyo C, Gómez M, Gasparian S, Morlon-Guyot J (1993) Comparison of amylolytic properties of Lactobacillus amylovorus and of Lactobacillus amylophilus. Appl Microbiol Biotechnol 40:266–269. doi: 10.1007/BF00170378 CrossRefGoogle Scholar
  27. Reddy G, Altaf M, Naveena BJ et al (2008) Amylolytic bacterial lactic acid fermentation—a review. Biotechnol Adv 26:22–34. doi: 10.1016/j.biotechadv.2007.07.004 CrossRefGoogle Scholar
  28. Setyawati YD, Ahsan SF, Ong LK et al (2016) Production of glutinous rice flour from broken rice via ultrasonic assisted extraction of amylose. Food Chem 203:158–164. doi: 10.1016/j.foodchem.2016.02.068 CrossRefGoogle Scholar
  29. Subramanian MR, Talluri S, Christopher LP (2015) Production of lactic acid using a new homofermentative Enterococcus faecalis isolate. Microb Biotechnol 8:221–229. doi: 10.1111/1751-7915.12133 CrossRefGoogle Scholar
  30. Upadhyaya BP, DeVeaux LC, Christopher LP (2014) Metabolic engineering as a tool for enhanced lactic acid production. Trends Biotechnol 32:637–644. doi: 10.1016/j.tibtech.2014.10.005 CrossRefGoogle Scholar
  31. Wagner M, Loy A, Nogueira R et al (2002) Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek 81:665–680. doi: 10.1023/a:1020586312170 CrossRefGoogle Scholar
  32. Xiaodong W, Xuan G, Rakshit SK (1997) Direct fermentative production of lactic acid on cassava and other starch substrates. Biotechnol Lett 19:841–843CrossRefGoogle Scholar
  33. Zenebon O, Pascuet NS, Tiglea P (2008) Métodos físico-químicos para análise de alimentos. Instituto Adolfo Lutz, São Paulo (online version)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Luiza Varela Nunes
    • 1
  • Fabiane Fernanda de Barros Correa
    • 2
  • Pedro de Oliva Neto
    • 2
  • Cassia Roberta Malacrida Mayer
    • 3
  • Bruna Escaramboni
    • 2
  • Tania Sila Campioni
    • 2
  • Natan Roberto de Barros
    • 4
  • Rondinelli Donizetti Herculano
    • 4
  • Eutimio Gustavo Fernández Núñez
    • 1
    • 5
    Email author
  1. 1.Grupo de Engenharia de Bioprocessos, Departamento de Ciências BiológicasUniversidade Estadual Paulista ‘Júlio de Mesquita Filho’ Campus-AssisAssisBrazil
  2. 2.Laboratório de Biotecnologia Industrial, Departamento de BiotecnologiaUniversidade Estadual Paulista ‘Júlio de Mesquita Filho’ Campus-AssisAssisBrazil
  3. 3.Laboratório de Química de Alimentos e Nanobiotecnologia, Departamento de BiotecnologiaUniversidade Estadual Paulista “Júlio de Mesquita Filho”, Campus-AssisAssisBrazil
  4. 4.Instituo de Química - AraraquaraUniversidade Estadual Paulista ‘Júlio de Mesquita Filho’ Campus-AraraquaraAraraquaraBrazil
  5. 5.Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABCSanto AndréBrazil

Personalised recommendations