The application of powerful promoters to enhance gene expression in industrial microorganisms

  • Shenghu Zhou
  • Guocheng Du
  • Zhen Kang
  • Jianghua Li
  • Jian Chen
  • Huazhong LiEmail author
  • Jingwen ZhouEmail author


Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.


Combinatorial promoter Dynamic regulation Logic gate Metabolic engineering Promoter prediction Synthetic biology Static regulation 



This work was supported by the Major State Basic Research Development Program of China (973 Program, 2014CB745100), the National Natural Science Foundation of China (31370130), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD, 201256), the Key Technologies R & D Program of Jiangsu Province (BE2014698), and the 111 Project (111-2-06).


  1. Adams BL, Carter KK, Guo M et al (2014) Evolved quorum sensing regulator, LsrR, for altered switching functions. ACS Synth Biol 3:210–219CrossRefGoogle Scholar
  2. Ajikumar PK, Xiao WH, Tyo KEJ et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330:70–74CrossRefGoogle Scholar
  3. Alper H, Fischer C, Nevoigt E et al (2005) Tuning genetic control through promoter engineering. P Natl Acad Sci USA 102:12678–12683CrossRefGoogle Scholar
  4. Amit R (2012) Towards synthetic gene circuits with enhancers: biology’s multi-input integrators. In: Subcell biochem. Springer, pp 3–20Google Scholar
  5. Anderson JC, Voigt CA, Arkin AP (2007) Environmental signal integration by a modular AND gate. Mol Syst Biol 3:133CrossRefGoogle Scholar
  6. Anesiadis N, Cluett WR, Mahadevan R (2008) Dynamic metabolic engineering for increasing bioprocess productivity. Metab Eng 10:255–266CrossRefGoogle Scholar
  7. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRefGoogle Scholar
  8. Baez A, Majdalani N, Shiloach J (2014) Production of recombinant protein by a novel oxygen-induced system in Escherichia coli. Microb Cell Fact 13:50CrossRefGoogle Scholar
  9. Binder D, Gruenberger A, Loeschcke A et al (2014) Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG. Integr Bio-UK 6:755–765CrossRefGoogle Scholar
  10. Blazeck J, Alper HS (2013) Promoter engineering: Recent advances in controlling transcription at the most fundamental level. Biotech J 8:46–58CrossRefGoogle Scholar
  11. Blazeck J, Liu L, Redden H et al (2011) Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach. Appl Environ Microb 77:7905–7914CrossRefGoogle Scholar
  12. Blazeck J, Garg R, Reed B et al (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol Bioeng 109:2884–2895CrossRefGoogle Scholar
  13. Brockman IM, Prather KLJ (2015) Dynamic metabolic engineering: new strategies for developing responsive cell factories. Biotech J 10:1360–1369CrossRefGoogle Scholar
  14. Cox RS, Surette MG, Elowitz MB (2007) Programming gene expression with combinatorial promoters. Mol Syst Biol 3:145Google Scholar
  15. De Mey M, Maertens J, Lequeux GJ et al (2007) Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. Bmc Biotechnol 7:34CrossRefGoogle Scholar
  16. Dehli T, Solem C, Jensen PR (2012) Tunable promoters in synthetic and systems biology. In: Subcell biochem. Springer, pp 181–201Google Scholar
  17. Dreos R, Ambrosini G, Perier RC et al (2015) The eukaryotic promoter database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res 43:D92–D96CrossRefGoogle Scholar
  18. Dueber JE, Wu GC, Malmirchegini GR et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759CrossRefGoogle Scholar
  19. Fassler JS, Gussin GN (1996) Promoters and basal transcription machinery in eubacteria and eukaryotes: concepts, definitions, and analogies. Methods Enzymol 273:3–29CrossRefGoogle Scholar
  20. Foster PL (2000) Adaptive mutation: implications for evolution. Bioessays 22:1067–1074CrossRefGoogle Scholar
  21. Fowler ZL, Gikandi WW, Koffas MAG (2009) Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl Environ Microbiol 75:5831–5839CrossRefGoogle Scholar
  22. Gama-Castro S, Jimenez-Jacinto V, Peralta-Gil M et al (2008) RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Res 36:D120–D124CrossRefGoogle Scholar
  23. Goodman DB, Church GM, Kosuri S (2013) Causes and effects of N-terminal codon bias in bacterial genes. Science 342:475–479CrossRefGoogle Scholar
  24. Gralla JD (1996) Activation and repression of E. coli promoters. Curr Opin Genet Dev 6:526–530CrossRefGoogle Scholar
  25. Green AA, Silver PA, Collins JJ et al (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell 159:1–15CrossRefGoogle Scholar
  26. Grohmann D, Werner F (2011) Recent advances in the understanding of archaeal transcription. Curr Opin Microbiol 14:328–334CrossRefGoogle Scholar
  27. Hahn S, Young ET (2011) Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189:705–736CrossRefGoogle Scholar
  28. Hammer K, Mijakovic I, Jensen PR (2006) Synthetic promoter libraries—tuning of gene expression. Trends Biotechnol 24:53–55CrossRefGoogle Scholar
  29. Hu Y, Wan H, Li J et al (2015) Enhanced production of l-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. J Ind Microbiol Biot 42:1039–1047CrossRefGoogle Scholar
  30. Ingolia NT, Murray AW (2007) Positive-feedback loops as a flexible biological module. Curr biol 17:668–677CrossRefGoogle Scholar
  31. Iyer S, Karig DK, Norred SE et al (2013) Multi-input regulation and logic with T7 promoters in cells and cell-free systems. PLoS One 8:e78442CrossRefGoogle Scholar
  32. Jaini S, Lyubetskaya A, Gomes A et al (2014) Transcription factor binding site mapping using ChIP-SEq. Microbiol Spectr 2:1–21CrossRefGoogle Scholar
  33. Jensen PR, Hammer K (1998a) Artificial promoters for metabolic optimization. Biotechnol Bioeng 58:191–195CrossRefGoogle Scholar
  34. Jensen PR, Hammer K (1998b) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87Google Scholar
  35. Jun SH, Reichlen MJ, Tajiri M et al (2011) Archaeal RNA polymerase and transcription regulation. Crit Rev Biochem Mol Biol 46:27–40CrossRefGoogle Scholar
  36. Kanhere A, Bansal M (2005) Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res 33:3165–3175CrossRefGoogle Scholar
  37. Karr EA (2014) Transcription regulation in the third domain. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 89. Elsevier Academic Press Inc, San Diego, pp 101–133. doi: 10.1016/b978-0-12-800259-9.00003-2 Google Scholar
  38. Keren L, Zackay O, Lotan-Pompan M et al (2013) Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol 9:701CrossRefGoogle Scholar
  39. Kim JN, Jeong Y, Yoo JS et al (2015a) Genome-scale analysis reveals a role for NdgR in the thiol oxidative stress response in Streptomyces coelicolor. Bmc Genom 16:116CrossRefGoogle Scholar
  40. Kim S, Lee K, Bae S-J et al (2015b) Promoters inducible by aromatic amino acids and gamma-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. Appl Microbiol Biot 99:2705–2714CrossRefGoogle Scholar
  41. Kobayashi H, Kærn M, Araki M et al (2004) Programmable cells: interfacing natural and engineered gene networks. P Nat Acad Sci USA 101:8414–8419CrossRefGoogle Scholar
  42. Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol Plant Func Genom 236:189–204Google Scholar
  43. Leavitt JM, Alper HS (2015) Advances and current limitations in transcript-level control of gene expression. Curr Opin Biotech 34:98–104CrossRefGoogle Scholar
  44. Lee SH, Kim M-S, Jung HC et al (2015) Screening of a novel strong promoter by RNA sequencing and its application to H2 production in a hyperthermophilic archaeon. Appl Microbiol Biot 99:4085–4092CrossRefGoogle Scholar
  45. Li S, Wang J, Li X et al (2015) Genome-wide identification and evaluation of constitutive promoters in streptomycetes. Microb Cell Fact 14:172–172CrossRefGoogle Scholar
  46. Liu T, Vora H, Khosla C (2010) Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 12:378–386CrossRefGoogle Scholar
  47. Lu CF, Jeffries T (2007) Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microb 73:6072–6077CrossRefGoogle Scholar
  48. Luo Y, Zhang L, Barton KW et al (2015) Systematic identification of a panel of strong constitutive promoters from streptomyces albus. ACS Synth Biol 4:1001–1010CrossRefGoogle Scholar
  49. Madar D, Dekel E, Bren A et al (2013) Promoter activity dynamics in the lag phase of Escherichia coli. BMC Syst Biol 7:136CrossRefGoogle Scholar
  50. Madzak C, Treton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2:207–216Google Scholar
  51. Mardis ER (2007) ChIP-seq: welcome to the new frontier. Nat Methods 4:613–614CrossRefGoogle Scholar
  52. McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11CrossRefGoogle Scholar
  53. McWhinnie RL, Nano FE (2014) Synthetic promoters functional in Francisella novicida and Escherichia coli. Appl Environ Microb 80:226–234CrossRefGoogle Scholar
  54. Mendoza-Vargas A, Olvera L, Olvera M et al (2009) Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 4:e7526CrossRefGoogle Scholar
  55. Murphy KF, Balázsi G, Collins JJ (2007) Combinatorial promoter design for engineering noisy gene expression. P Nat Acad Sci USA 104:12726–12731CrossRefGoogle Scholar
  56. Myers KS, Yan HH, Ong IM et al (2013) Genome-scale analysis of Escherichia coli FNR reveals complex features of transcription factor binding. PLoS Genet 9:e1003565CrossRefGoogle Scholar
  57. Nair TM, Kulkarni B (1994) On the consensus structure within the E. coli promoters. Biophys Chem 48:383–393CrossRefGoogle Scholar
  58. Nakashima N, Tamura T, Good L (2006) Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res 34:e138CrossRefGoogle Scholar
  59. Nakashima N, Akita H, Hoshino T (2014) Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab Eng 25:204–214CrossRefGoogle Scholar
  60. Nelson JD, Denisenko O, Bomsztyk K (2006) Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protocols 1:179–185CrossRefGoogle Scholar
  61. Oneill LP, Turner BM (1996) Immunoprecipitation of chromatin. RNA Polymerase A Factors Pt B 274:189–197Google Scholar
  62. Pestka S, Daugherty BL, Jung V et al (1984) Anti-mRNA: specific inhibition of translation of single mRNA molecules. P Nat Acad Sci USA 81:7525–7528CrossRefGoogle Scholar
  63. Pisithkul T, Patel NM, Amador-Noguez D (2015) Post-translational modifications as key regulators of bacterial metabolic fluxes. Curr Opini Microbiol 24:29–37CrossRefGoogle Scholar
  64. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183CrossRefGoogle Scholar
  65. Qureshi SA, Jackson SP (1998) Sequence-specific DNA binding by the S. shibatae TFIIB homolog, TFB, and its effect on promoter strength. Mol Cell 1:389–400CrossRefGoogle Scholar
  66. Redden H, Alper HS (2015) The development and characterization of synthetic minimal yeast promoters. Nat Commun 6:7810CrossRefGoogle Scholar
  67. Roy AL, Singer DS (2015) Core promoters in transcription: old problem, new insights. Trends Biochem Sci 40:165–171CrossRefGoogle Scholar
  68. Rytter JV, Helmark S, Chen J et al (2014) Synthetic promoter libraries for Corynebacterium glutamicum. Appl Microbiol Biot 98:2617–2623CrossRefGoogle Scholar
  69. Saecker RM, Record MT, Dehaseth PL (2011) Mechanism of bacterial transcription initiation: RNA polymerase-promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J Mol Biol 412:754–771CrossRefGoogle Scholar
  70. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950CrossRefGoogle Scholar
  71. Schaerli Y, Gili M, Isalan M (2014) A split intein T7 RNA polymerase for transcriptional AND-logic. Nucleic Acids Res 42:12322–12328CrossRefGoogle Scholar
  72. Schujman GE, Paoletti L, Grossman AD et al (2003) FapR, a bacterial transcription factor involved in global regulation of membrane lipid biosynthesis. Dev Cell 4:663–672CrossRefGoogle Scholar
  73. Seo SW, Yang J-S, Kim I et al (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74CrossRefGoogle Scholar
  74. Shiroguchi K, Jia TZ, Sims PA et al (2012) Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes. P Natl Acad Sci USA 109:1347–1352CrossRefGoogle Scholar
  75. Siegl T, Tokovenko B, Myronovskyi M et al (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab Eng 19:98–106CrossRefGoogle Scholar
  76. Sierro N, Makita Y, de Hoon M et al (2008) DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 36:D93–D96CrossRefGoogle Scholar
  77. Singh V (2014) Recent advances and opportunities in synthetic logic gates engineering in living cells. Syst Synth Biol 8:271–282CrossRefGoogle Scholar
  78. Singh AK, Sad K, Singh SK et al (2014) Regulation of gene expression at low temperature: role of cold-inducible promoters. Microbiology 160:1291–1296CrossRefGoogle Scholar
  79. Solovyev VV, Shahmuradov IA (2003) PromH: promoters identification using orthologous genomic sequences. Nucleic Acids Res 31:3540–3545CrossRefGoogle Scholar
  80. Soppa J (1999) Transcription initiation in Archaea: facts, factors and future aspects. Mol Microbiol 31:1295–1305CrossRefGoogle Scholar
  81. Sun JG, Han ZY, Ge XZ et al (2014) Distinct promoters affect pyrroloquinoline quinone production in recombinant Escherichia coli and Klebsiella pneumoniae. Curr Microbiol 69:451–456CrossRefGoogle Scholar
  82. Teo WS, Chang MW (2014) Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae. Biotechnol Bioeng 111:144–151CrossRefGoogle Scholar
  83. Venayak N, Anesiadis N, Cluett WR et al (2015) Engineering metabolism through dynamic control. Curr Opin Biotech 34:142–152CrossRefGoogle Scholar
  84. Wang J, Ai X, Mei H et al (2013) High-throughput identification of promoters and screening of highly active promoter-5′-UTR DNA region with different characteristics from Bacillus thuringiensis. PLoS One 8:e62960CrossRefGoogle Scholar
  85. West RW Jr, Neve RL, Rodriguez RL (1979) Construction and characterization of E. coli promoter-probe plasmid vectors. I. Cloning of promoter-containing DNA fragments. Gene 7:271–288CrossRefGoogle Scholar
  86. Williams T, Averesch N, Winter G et al (2015) Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng 29:124–134CrossRefGoogle Scholar
  87. Wright BE (2004) Stress-directed adaptive mutations and evolution. Mol Microbiol 52:643–650CrossRefGoogle Scholar
  88. Wu JJ, Du GC, Zhou JW et al (2013a) Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55CrossRefGoogle Scholar
  89. Wu JJ, Liu PR, Fan YM et al (2013b) Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from l-tyrosine. J Biotechnol 167:404–411CrossRefGoogle Scholar
  90. Wu JJ, Zhou TT, Du GC et al (2014) Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PloS One 9:e101492CrossRefGoogle Scholar
  91. Xu P, Ranganathan S, Fowler ZL et al (2011) Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng 13:578–587CrossRefGoogle Scholar
  92. Xu P, Gu Q, Wang W et al (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409CrossRefGoogle Scholar
  93. Xu P, Li LY, Zhang FM et al (2014a) Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. P Nat Acad Sci USA 111:11299–11304CrossRefGoogle Scholar
  94. Xu P, Wang WY, Li LY et al (2014b) Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. Acs Chem Biol 9:451–458CrossRefGoogle Scholar
  95. Yim SS, An SJ, Kang M et al (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol Bioeng 110:2959–2969CrossRefGoogle Scholar
  96. Zaslaver A, Bren A, Ronen M et al (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Meth 3:623–628CrossRefGoogle Scholar
  97. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359CrossRefGoogle Scholar
  98. Zhang X, Zhang XF, Li HP et al (2014) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biot 98:5387–5396CrossRefGoogle Scholar
  99. Zhou JW, Du GC, Chen J (2014) Novel fermentation processes for manufacturing plant natural products. Curr Opin Biotech 25:17–23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
  2. 2.Synergetic Innovation Center of Food Safety and NutritionWuxiChina

Personalised recommendations