Advertisement

Rhizobacteria with nematicide aptitude: enzymes and compounds associated

  • C. Castaneda-Alvarez
  • E. Aballay
REVIEW

Abstract

The use of rhizobacteria to control plant parasitic nematodes has been widely studied. Currently, the research focuses on bacteria-nematode interactions that can mitigate this complex microbiome in agriculture. Various enzymes, toxins and metabolic by-products from rhizobacteria antagonize plant parasitic nematodes, and many different modes of action have been proposed. Hydrolytic enzymes, primarily proteases, collagenases and chitinases, have been related to the nematicide effect in rhizobacteria, proving to be an important factor involved in the degradation of different chemical constituents of nematodes at distinct developmental stages. Exuded metabolites may also alter the nematode-plant recognition process or create a hostile environment for nematodes in the rhizosphere. Specific bacteria strains responsible for the production of toxins, such as Cry proteins, are one of the strategies used by rhizobacteria. Characterization of the rhizobacteria mode of action could strengthen the development of commercial products to control populations of plant parasitic nematodes. This review aims to provide an overview of different enzymes and compounds produced by rhizobacteria related to the process of antagonism to plant-parasitic nematodes.

Keywords

Biological control Enzymes Metabolites Plant-parasitic nematodes Toxins 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aballay E, Ordenes P, Mårtensson A, Persson P (2013) Effects of rhizobacteria on parasitism by Meloidogyne ethiopica on grapevines. Eur J Plant Pathol 135:137–145. doi: 10.1007/s10658-012-0073-7 CrossRefGoogle Scholar
  2. Ahmad K, Ismail SI (2016) Utilization of Biomaterials as Soil Amendments and Crop Protection Agents in Integrated Nematode Management. In: Hakeem KR, Akhtar MS, Abdullah SNA (eds) Plant, Soil and Microbes. Springer, Cham, pp 225–251CrossRefGoogle Scholar
  3. Akhtar M, Malik A (2000) Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour Technol 74:35–47. doi: 10.1016/S0960-8524(99)00154-6 CrossRefGoogle Scholar
  4. Ali NI, Siddiqui IA, Shahid Shaukat S, Zaki M (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058. doi: 10.1016/S0038-0717(02)00029-9 CrossRefGoogle Scholar
  5. Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61. doi: 10.1016/j.sjbs.2012.10.004 CrossRefGoogle Scholar
  6. Bao Y, Chen S, Neher D (2011) Effect of soil disturbance and biocides on nematode communities and extracellular enzyme activity in soybean cyst nematode suppressive soil. Nematology 13:687–699. doi: 10.1163/138855410X541230 CrossRefGoogle Scholar
  7. Becker JO (2014) Plant Health Management: Crop Protection with Nematicides. Encyclopedia of Agriculture and Food Systems. Elsevier, London, pp 400–407CrossRefGoogle Scholar
  8. Bird AF, Bird J (1991) The Egg. The Structure of Nematodes, 2nd edn. Elsevier, London, pp 7–43CrossRefGoogle Scholar
  9. Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177. doi: 10.1007/s002039900127 CrossRefGoogle Scholar
  10. Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS et al (2008) Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol Control 47:55–59. doi: 10.1016/j.biocontrol.2008.07.008 CrossRefGoogle Scholar
  11. Castaneda-Alvarez C, Prodan S, Rosales IM, Aballay E (2016) Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on Xiphinema index Thorne & Allen. J Appl Microbiol 120:413–424. doi: 10.1111/jam.12987 CrossRefGoogle Scholar
  12. Chan YL, Cai D, Taylor PWJ et al (2010) Adverse effect of the chitinolytic enzyme PjCHI-1 in transgenic tomato on egg mass production and embryonic development of Meloidogyne incognita. Plant Pathol 59:922–930. doi: 10.1111/j.1365-3059.2010.02314.x CrossRefGoogle Scholar
  13. Chen L, Jiang H, Cheng Q et al (2015) Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Sci Rep 5:14395. doi: 10.1038/srep14395 CrossRefGoogle Scholar
  14. Cretoiu MS, Korthals GW, Visser JHM, Van Elsas D (2013) Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental. Agric Field 79:5291–5301. doi: 10.1128/AEM.01361-13 Google Scholar
  15. Cronin D, Fenton A, Dunne C et al (1997a) Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361Google Scholar
  16. Cronin D, Moënne-Loccoz Y, Dunne C, O’Gara F (1997b) Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur J Plant Pathol 103:433–440. doi: 10.1023/A:1008662729757 CrossRefGoogle Scholar
  17. Curtis RHC, Jones JT, Davies KG et al (2011) Biological Control of Plant-Parasitic Nematodes. In: Davies K, Spiegel Y (eds) Biological Control of Plant-Parasitic Nematodes: Building Coherence between Microbial Ecology and Molecular Mechanisms, Progress in Biological Control. Springer, Dordrecht, p 311Google Scholar
  18. Fujimoto D, Kanayh S (1973) Cuticlin: a noncollagen structural protein from Ascaris cuticle. Arch Biochem Biophys 157:1–6CrossRefGoogle Scholar
  19. Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214. doi: 10.1128/JB.183.21.6207 CrossRefGoogle Scholar
  20. Galper S, Cohn E, Chet I (1990) Nematicidal effect of collagen-amended soil and the influence of protease and collagenase. Rev Nematol 13:67–71Google Scholar
  21. Gortari MC, Hours RA (2008) Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycol Prog 7:221–238. doi: 10.1007/s11557-008-0571-3 CrossRefGoogle Scholar
  22. Gu YQ, Mo MH, Zhou JP et al (2007) Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol Biochem 39:2567–2575. doi: 10.1016/j.soilbio.2007.05.011 CrossRefGoogle Scholar
  23. Guo S, Liu M, Peng D et al (2008) New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl Environ Microbiol 74:6997–7001. doi: 10.1128/AEM.01346-08 CrossRefGoogle Scholar
  24. Huang X, Tian B, Niu Q et al (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727. doi: 10.1016/j.resmic.2005.02.006 CrossRefGoogle Scholar
  25. Huang Y, Xu C, Ma L et al (2010) Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur J Plant Pathol 126:417–422. doi: 10.1007/s10658-009-9550-z CrossRefGoogle Scholar
  26. Iatsenko I, Boichenko I, Sommer RJ (2014a) Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Appl Environ Microbiol 80:3266–3275. doi: 10.1128/AEM.00464-14 CrossRefGoogle Scholar
  27. Iatsenko I, Nikolov A, Sommer R (2014b) Identification of Distinct Bacillus thuringiensis 4A4 nematicidal factors using the model nematodes Pristionchus pacificus and Caenorhabditis elegans. Toxins (Basel) 6:2050–2063. doi: 10.3390/toxins6072050 CrossRefGoogle Scholar
  28. Jung WJ, Kim KY, Park YS et al (2014) Purification and properties of a Meloidogyne-antagonistic chitinase from Lysobacter capsici YS1215. Nematology 16:63–72. doi: 10.1163/15685411-00002745 CrossRefGoogle Scholar
  29. Khan A, Williams KL, Nevalainen HKM (2004) Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 31:346–352. doi: 10.1016/j.biocontrol.2004.07.011 CrossRefGoogle Scholar
  30. Khan A, Shaukat SS, Islam S, Khan A (2012) Evaluation of fluorescent pseudomonad isolates for their activity against some plant-parasitic nematodes. Am J Agric Environ Sci 12:1496–1506. doi: 10.5829/idosi.aejaes.2012.12.11.1841 Google Scholar
  31. Krechel A, Faupel A, Hallmann J et al (2002) Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48:772–786. doi: 10.1139/w02-071 CrossRefGoogle Scholar
  32. Kumar T, Kang SC, Maheshwari DK (2005) Nematicidal activity of some fluorescent pseudomonads on cyst forming nematode, Heterodera cajani and growth of Sesamum indicum var. RT1. Agric Chem Biotechnol 48:161–166Google Scholar
  33. Lee JH, Ma KC, Ko SJ et al (2011) Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr Microbiol 62:746–751. doi: 10.1007/s00284-010-9779-y CrossRefGoogle Scholar
  34. Lee YS, Park YS, Anees M et al (2013) Nematicidal activity of Lysobacter capsici YS1215 and the role of gelatinolytic proteins against root-knot nematodes. Biocontrol Sci Technol 23:1427–1441. doi: 10.1080/09583157.2013.840359 CrossRefGoogle Scholar
  35. Lee YS, Nguyen XH, Naing KW et al (2014) Role of lytic enzymes secreted by Lysobacter capsici YS1215 in the control of root-knot nematode of tomato plants. Indian J Microbiol 55:74–80. doi: 10.1007/s12088-014-0499-z CrossRefGoogle Scholar
  36. Li XQ, Tan A, Voegtline M et al (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol Control 47:97–102. doi: 10.1016/j.biocontrol.2008.06.007 CrossRefGoogle Scholar
  37. Lian LH, Tian BY, Xiong R et al (2007) Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett Appl Microbiol 45:262–269. doi: 10.1111/j.1472-765X.2007.02184.x CrossRefGoogle Scholar
  38. Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood (Nematoda: Tylenchida). Nematologica 38:227–236. doi: 10.1163/187529292X00199 CrossRefGoogle Scholar
  39. Meyer SLF, Halbrendt JM, Carta LK et al (2009) Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41:274–280Google Scholar
  40. Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 104:20618–20622. doi: 10.1073/pnas.0710191104 CrossRefGoogle Scholar
  41. Millew PM, Sands DC (1977) Effects of hydrolytic enzymes on plant-parasitic nematodes. J Nematol 9:192–197Google Scholar
  42. Mota LCBM, dos Santos MA (2016) Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Trop Plant Pathol 41:84–90. doi: 10.1007/s40858-016-0072-x CrossRefGoogle Scholar
  43. Neidig N, Paul RJ, Scheu S, Jousset A (2011) Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb Ecol 61:853–859. doi: 10.1007/s00248-011-9821-z CrossRefGoogle Scholar
  44. Niu Q, Huang X, Zhang L et al (2006) A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch Microbiol 185:439–448. doi: 10.1007/s00203-006-0112-x CrossRefGoogle Scholar
  45. Niu Q, Huang X, Zhang L et al (2007) Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida. Appl Microbiol Biotechnol 75:141–148. doi: 10.1007/s00253-006-0794-7 CrossRefGoogle Scholar
  46. Noreen R, Ali SA, Hasan KA et al (2015) Evaluation of biocontrol potential of fluorescent Pseudomonas associated with root nodules of mungbean. Crop Prot 75:18–24. doi: 10.1016/j.cropro.2015.04.018 CrossRefGoogle Scholar
  47. Oliveira DF, Santos Junior HM, Dos Nunes AS et al (2014) Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. An Acad Bras Cienc 86:525–538. doi: 10.1590/0001-3765201402412 CrossRefGoogle Scholar
  48. Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot 26:971–977. doi: 10.1016/j.cropro.2006.09.004 CrossRefGoogle Scholar
  49. Page AP, Stepek G, Winter AD, Pertab D (2014) Enzymology of the nematode cuticle: a potential drug target? Int J Parasitol Drugs Drug Resist 4:133–141. doi: 10.1016/j.ijpddr.2014.05.003 CrossRefGoogle Scholar
  50. Paiva G, Proença DN, Francisco R et al (2013) Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS ONE 8:e79705. doi: 10.1371/journal.pone.0079705 CrossRefGoogle Scholar
  51. Perry RN, Trett MW (1986) Ultrastructure of the eggshell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Rev Nématologie 9:399–403Google Scholar
  52. Rahul S, Chandrashekhar P, Hemant B et al (2014) Nematicidal activity of microbial pigment from Serratia marcescens. Nat Prod Res 28:1399–1404. doi: 10.1080/14786419.2014.904310 CrossRefGoogle Scholar
  53. Ray C, Hussey RS (1995) Evidence for proteolytic processing of a cuticle collagen in a plant-parasitic nematode. Mol Biochem Parasitol 72:243–246CrossRefGoogle Scholar
  54. Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological Control in Rice Fields: Role of Hydrogen Sulfide. Science(80-) 148:524–526. doi: 10.1126/science.148.3669.524 Google Scholar
  55. Salehi JG, Seifinejad A, Saeedizadeh A et al (2008) Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Can J Microbiol 54:812–822. doi: 10.1139/w08-074 CrossRefGoogle Scholar
  56. Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182. doi: 10.1016/j.plaphy.2011.07.016 CrossRefGoogle Scholar
  57. Sela S, Schickler H, Chet I, Spiegel Y (1998) Purification and characterization of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. Eur J Plant Pathol 104:59–67CrossRefGoogle Scholar
  58. Shanahan P, Sullivan DJO, Simpson P, Jeremy D (1992) Production Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 28:353–358Google Scholar
  59. Siddiqui IA (2000) Effects of cell suspension and cell-free culture filtrate of Pseudomonas aeruginosa in the control of root rot-root knot disease complex of tomato (Lycopersicon esculentum Mill.). Acta Agrobot 53:47–55CrossRefGoogle Scholar
  60. Siddiqui IA, Shaukat S (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623. doi: 10.1016/j.soilbio.2003.08.006 CrossRefGoogle Scholar
  61. Siddiqui IA, Shaukat SS, Khan GH, Ali NI (2003) Suppression of Meloidogyne javanica by Pseudomonas aeruginosa IE-6S+ in tomato: the influence of NaCl, oxygen and iron levels. Soil Biol Biochem 35:1625–1634. doi: 10.1016/j.soilbio.2003.08.007 CrossRefGoogle Scholar
  62. Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649. doi: 10.1128/AEM.71.9.5646-5649.2005 CrossRefGoogle Scholar
  63. Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J Microbiol Biotechnol 22:641–650. doi: 10.1007/s11274-005-9084-2 CrossRefGoogle Scholar
  64. Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208. doi: 10.1089/ind.2006.2.194 CrossRefGoogle Scholar
  65. Tian H, Riggs RD, Crippen DL (2000) Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. J Nematol 32:370–376Google Scholar
  66. Tian B, Yang J, Lian L et al (2007a) Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl Microbiol Biotechnol 74:372–380. doi: 10.1007/s00253-006-0690-1 CrossRefGoogle Scholar
  67. Tian B, Yang J, Zhang K (2007b) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61:197–213. doi: 10.1111/j.1574-6941.2007.00349.x CrossRefGoogle Scholar
  68. van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101:1–16. doi: 10.1016/j.jip.2009.02.009 CrossRefGoogle Scholar
  69. Veronico P, Gray LJ, Jones JT et al (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genomics 266:28–34. doi: 10.1007/s004380100513 CrossRefGoogle Scholar
  70. Vining LC (1990) Functions of secondary metabolites. Annu Rev Microbiol 44:395–427. doi: 10.1146/annurev.mi.44.100190.002143 CrossRefGoogle Scholar
  71. Wei L, Shao Y, Wan J et al (2014) Isolation and characterization of a rhizobacterial antagonist of root-knot nematodes. PLOS ONE 9:e85988. doi: 10.1371/journal.pone.0085988 CrossRefGoogle Scholar
  72. Westerdahl BB, Carlson HL, Grant J et al (1992) Management of plant-parasitic nematodes with a chitin-urea soil amendment and other materials. J Nematol 24:669–680Google Scholar
  73. Wharton DA (1983) The production and functional morphology of helminth egg-shells. Parasitology 86:85–97CrossRefGoogle Scholar
  74. Woo-Jin J, Jung S-J, Park R-D et al (2002) Effect of chitinase produced form Paneibacillus illinoisensis on egg hatching of root-knot nematode, Meloidogyne spp. J Microbiol Biotechnol Biotechnol 12:865–871Google Scholar
  75. Wright DJ, Perry RN (2006) Reproduction, physiology and biochemistry. In: Perry RN, Moens M (eds) Plant Nematology, 2nd edn. CABI, Wallingford, p 447Google Scholar
  76. Yang J, Liang L, Li J, Zhang K-Q (2013) Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 97:7081–7095. doi: 10.1007/s00253-013-5045-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Crop Protection, Faculty of Agronomical SciencesUniversity of ChileSantiagoChile

Personalised recommendations