Insights into the degradation capacities of Amycolatopsis tucumanensis DSM 45259 guided by microarray data

  • Natalia Bourguignon
  • Rafael Bargiela
  • David Rojo
  • Tatyana N. Chernikova
  • Sara A. López de Rodas
  • Jesús García-Cantalejo
  • Daniela J. Näther
  • Peter N. Golyshin
  • Coral Barbas
  • Marcela Ferrero
  • Manuel Ferrer
Original Paper


The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.


Alkanes Amycolatopsis tucumanensis Aromatics Catabolome Degradation Microarray 



This work was supported by the CSIC (Programa CSIC de Cooperación Científica para el Desarrollo i-COOP; ref. COOPB20077), the European Community project KILLSPILL (FP7-KBBE-2012-312139), and the Spanish Ministry of Economy and Competitiveness (CTQ2014-55279-R). N.B. is a recipient of a fellowship from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. We thank Drs. Dietmar H. Pieper and Ramiro Vilchez-Vargas for their support in providing resources for this study.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11274_2016_2163_MOESM1_ESM.xls (992 kb)
Supplementary material 1 (XLS 991 kb)


  1. Albarracín VH, Alonso-Vega P, Trujillo ME, Amoroso MJ, Abate CM (2010a) Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments. Int J Syst Evol Microbiol 60(2):397–401CrossRefGoogle Scholar
  2. Albarracín VH, Amoroso MJ, Abate CM (2010b) Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to a copper for Zea mays plants. Chemosphere 79(2):131–137CrossRefGoogle Scholar
  3. Alcaide M, Tornés J, Stogios PJ, Xu X, Gertler C, Di Leo R, Bargiela R, Lafraya A, Guazzaroni ME, López-Cortés N, Chernikova TN, Golyshina OV, Nechitaylo TY, Plumeier I, Pieper DH, Yakimov MM, Savchenko A, Golyshin PN, Ferrer M (2013) Single residues dictate the co-evolution of dual esterases: MCP hydrolases from the α/β hydrolase family. Biochem J 454(1):157–166CrossRefGoogle Scholar
  4. Bailey MJ, Lilley AK, Thompson IP, Rainey PB, Ellis RJ (1995) Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol Ecol 4(6):755–763CrossRefGoogle Scholar
  5. Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S (2012) Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol 112:83–90CrossRefGoogle Scholar
  6. Bargiela R, Gertler C, Magagnini M, Mapelli F, Chen J, Daffonchio D, Golyshin PN, Ferrer M (2015a) Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenomic data. Front Microbiol 6:1270CrossRefGoogle Scholar
  7. Bargiela R, Mapelli F, Rojo D, Chouaia B, Tornés J, Borin S, Richter M, Del Pozo MV, Cappello S, Gertler C, Genovese M, Denaro R, Martínez-Martínez M, Fodelianakis S, Amer RA, Bigazzi D, Han X, Chen J, Chernikova TN, Golyshina OV, Mahjoubi M, Jaouanil A, Benzha F, Magagnini M, Hussein E, Al-Horani F, Cherif A, Blaghen M, Abdel-Fattah YR, Kalogerakis N, Barbas C, Malkawi HI, Golyshin PN, Yakimov MM, Daffonchio D, Ferrer M (2015b) Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. Sci Rep 5:11651CrossRefGoogle Scholar
  8. Bastiaens L, Springael D, Wattiau P, Harms H, deWachter R, Verachtert H, Diels L (2000) Isolation of adherent polycyclic aromatic hydrocarbon (PAH)-degrading bacteria using PAH-sorbing carriers. Appl Environ Microbiol 66(5):1834–1843CrossRefGoogle Scholar
  9. Beazley MJ, Martinez RJ, Rajan S, Powell J, Piceno YM, Tom LM, Andersen GL, Hazen TC, Van Nostrand JD, Zhou J, Mortazavi B, Sobecky PA (2012) Microbial community analysis of a coastal salt marsh affected by the deepwater horizon oil spill. PLoS ONE 7:e41305CrossRefGoogle Scholar
  10. Bourguignon N, Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2014a) Aerobic removal of methoxychlor by a native Streptomyces strain: identification of intermediate metabolites. Int Biodeter Biodegr 96:80–86CrossRefGoogle Scholar
  11. Bourguignon N, Isaac P, Alvarez H, Amoroso MJ, Ferrero MA (2014b) Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains. J Basic Microbiol 54(12):1288–1294CrossRefGoogle Scholar
  12. Brezna B, Khan AA, Cerniglia CE (2003) Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol Lett 223(2):177–183CrossRefGoogle Scholar
  13. Chen BS, Otten LG, Resch V, Muyzer G, Hanefeld U (2013) Draft genome sequence of Rhodococcus rhodochrous strain ATCC 17895. Stand Genom Sci 9(1):175–184CrossRefGoogle Scholar
  14. Chun J, Kim SB, Oh YK, Seong CN, Lee DH, Bae KS, Lee KJ, Kang SO, Hah YC, Goodfellow M (1999) Amycolatopsis thermoflava sp. nov., a novel soil actinomycete from Hainan Island China. Int J Syst Bacteriol 49:1369–1373CrossRefGoogle Scholar
  15. Colin VL, Castro MF, Amoroso MJ, Villegas LB (2013) Production of bioemulsifiers by Amycolatopsis tucumanensis DSM 45259 and their potential application in remediation technologies for soils contaminated with hexavalent chromium. J Hazard Mater 261:577–583CrossRefGoogle Scholar
  16. Dávila Costa JS, Albarracín VH, Abate CM (2011a) Cupric reductase activity in copper-resistant Amycolatopsis tucumanensis. Water Air Soil Pollut 216:527–535CrossRefGoogle Scholar
  17. Dávila Costa JS, Albarracín VH, Abate CM (2011b) Responses of environmental Amycolatopsis strains to copper stress. Ecotoxicol Environ Saf 74(7):2020–2028CrossRefGoogle Scholar
  18. Dávila Costa JS, Kothe E, Abate CM, Amoroso MJ (2012) Unraveling the Amycolatopsis tucumanensis copper-resistome. Biometals 25(5):905–917CrossRefGoogle Scholar
  19. Davis JR, Goodwin LA, Woyke T, Teshima H, Bruce D, Detter C, Tapia R, Han S, Han J, Pitluck S, Nolan M, Mikhailova N, Land ML, Sello JK (2012) Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J Bacteriol 194(9):2396–2397CrossRefGoogle Scholar
  20. DeBruyn JM, Mead TJ, Sayler GS (2012) Horizontal transfer of PAH catabolism genes in Mycobacterium: evidence from comparative genomics and isolated pyrene-degrading bacteria. Environ Sci Technol 46(1):99–106CrossRefGoogle Scholar
  21. Duarte M, Jauregui R, Vilchez-Vargas R, Junca H, Pieper DH (2014) AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. Database (Oxford) 2014:bau118Google Scholar
  22. Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:173CrossRefGoogle Scholar
  23. Guazzaroni M-E, Herbst FA, Lores I, Tamames J, Peláez AI, López-Cortés N, Alcaide M, Del Pozo MV, Vieites JM, von Bergen M, Gallego JL, Bargiela R, López-López A, Pieper DH, Rosselló-Móra R, Sánchez J, Seifert J, Ferrer M (2013) Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME J 7(1):122–136CrossRefGoogle Scholar
  24. Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the deepwater horizon oil spill identified by cultivation and DNA-SIP. ISME J 7(11):2091–2104CrossRefGoogle Scholar
  25. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HY, Osman S, Lu Z, Van Nostrand JD, Zhou J, Mason OU (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330(6001):204–208CrossRefGoogle Scholar
  26. Iida T, Mukouzaka Y, Nakamura K, Kudo T (2002) Plasmid-borne genes code for an angular dioxygenase involved in dibenzofuran degradation by Terrabacter sp. strain YK3. Appl Environ Microbiol 68(8):3716–3723CrossRefGoogle Scholar
  27. Kallimanis A, Karabika E, Mavromatis K, Lapidus A, Labutti KM, Liolios K, Ivanova N, Goodwin L, Woyke T, Velentzas AD, Perisynakis A, Ouzounis CC, Kyrpides NC, Koukkou AI, Drainas C (2011) Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum Spyr1. Stand Genom Sci 5(1):144–153CrossRefGoogle Scholar
  28. Kelley I, Cernigilia CE (1995) Degradation of a mixture of high-molecular-weight polycyclic aromatic hydrocarbons by a Mycobacterium strain PYR-1. J Soil Contam 4(1):77–91CrossRefGoogle Scholar
  29. Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72(2):1045–1054CrossRefGoogle Scholar
  30. Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189(2):464–472CrossRefGoogle Scholar
  31. Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE (2008) Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 19(6):859–881CrossRefGoogle Scholar
  32. Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the deepwater horizon oil spill. Front Microbiol 4:50CrossRefGoogle Scholar
  33. Kostka JE, Prakash O, Overholt WA, Green SJ, Freyer G, Canion A, Delgardio J, Norton N, Hazen TC, Huettel M (2011) Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77(22):7962–7974CrossRefGoogle Scholar
  34. Kwak Y, Park GS, Lee SE, Li QX, Shin JH (2014) Genome sequence of Mycobacterium aromaticivorans JS19b1(T), a novel isolate from Hawaiian soil. J Biotechnol 186:137–138CrossRefGoogle Scholar
  35. Kweon O, Kim SJ, Blom J, Kim SK, Kim BS, Baek DH, Park SI, Sutherland JB, Cerniglia CE (2015) Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evol Biol 15:21CrossRefGoogle Scholar
  36. Larkin MJ, Kulakov LA, Allen CC (2006) Biodegradation by members of the genus Rhodococcus: biochemistry, physiology, and genetic adaptation. Adv Appl Microbiol 59:1–29CrossRefGoogle Scholar
  37. Liang Y, Van Nostrand JD, Deng Y, He Z, Wu L, Zhang X, Li G, Zhou J (2011) Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 5(3):403–413CrossRefGoogle Scholar
  38. Lincoln SA, Hamilton TL, Valladares Juárez AG, Schedler M, Macalady JL, Müller R, Freeman KH (2015) Draft genome sequence of the piezotolerant and crude oil-degrading bacterium Rhodococcus qingshengii strain TUHH-12. Genome Announc 3(2):e00268CrossRefGoogle Scholar
  39. Lloyd-Jones G, Hunter DW (1997) Characterization of fluoranthene- and pyrene-degrading Mycobacterium-like strains by RAPD and SSU sequencing. FEMS Microbiol Lett 153(1):51–56CrossRefGoogle Scholar
  40. Lu Z, Deng Y, Van Nostrand JD, He Z, Voordeckers J, Zhou A, Lee YJ, Mason OU, Dubinsky EA, Chavarria KL, Tom LM, Fortney JL, Lamendella R, Jansson JK, D’haeseleer P, Hazen TC, Zhou J (2012) Microbial gene functions enriched in the deepwater horizon deep-sea oil plume. ISME J 6(2):451–460CrossRefGoogle Scholar
  41. Luo Q, Hiessl S, Steinbüchel A (2014) Functional diversity of Nocardia in metabolism. Environ Microbiol 16(1):29–48CrossRefGoogle Scholar
  42. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill. ISME J 6(9):1715–1727CrossRefGoogle Scholar
  43. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Bælum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC, Fortney JL, Jurelevicius D, Stringfellow WT, Alvarez-Cohen L, Hazen TC, Knight R, Gilbert JA, Jansson JK (2014) Metagenomics reveals sediment microbial community response to deepwater horizon oil spill. ISME J 8(7):1464–1475CrossRefGoogle Scholar
  44. McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103(42):15582–15587CrossRefGoogle Scholar
  45. Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11(6):540–546CrossRefGoogle Scholar
  46. Pandey J, Chauhan A, Jain RK (2009) Integrative approaches for assessing the ecological sustainability of in situ bioremediation. FEMS Microbiol Rev 33(2):324–375CrossRefGoogle Scholar
  47. Pathak A, Green SJ, Ogram A, Chauhan A (2013) Draft genome sequence of Rhodococcus opacus strain M213 shows a diverse catabolic potential. Genome Announc 1(1):e00144CrossRefGoogle Scholar
  48. Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32(5):736–794CrossRefGoogle Scholar
  49. Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14(5):1091–1117CrossRefGoogle Scholar
  50. Pizzul L, Castillo MP, Strenström J (2006) Characterization of selected actinomycetes degrading polyaromatics hydrocarbons in liquid culture and spiked soil. World J Microbiol Biotechnol 22(7):745–752CrossRefGoogle Scholar
  51. Qu J, Miao LL, Liu Y, Liu ZP (2015) Complete genome sequence of Rhodococcus sp. Strain IcdP1 shows diverse catabolic potential. Genome Announc 3(4):e00711–e00715CrossRefGoogle Scholar
  52. Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8(2):334–346CrossRefGoogle Scholar
  53. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309CrossRefGoogle Scholar
  54. Seo JS, Keum YS, Li QX (2012) Mycobacterium aromativorans JS19b1(T) degrades phenanthrene through C-1,2, C-3,4 and C-9,10 dioxygenation pathways. Int Biodeterior Biodegradation 70:96–103CrossRefGoogle Scholar
  55. Shen FT, Lin JL, Huang CC, Ho YN, Arun AB, Young LS, Young CC, Shen FT, Lin JL, Huang CC, Ho YN, Arun AB, Young LS, Young CC (2009) Molecular detection and phylogenetic analysis of the catechol 1,2-dioxygenase gene from Gordonia spp. Syst Appl Microbiol 32(5):291–300CrossRefGoogle Scholar
  56. Stingley RL, Brezna B, Khan AA, Cerniglia CE (2004) Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150(11):3749–3761CrossRefGoogle Scholar
  57. Sudhir KS, Hai G, Modi DR, Joyotsana KP (2014) Growth potential assessment of actinomycetes isolated from petroleum contaminated soil. J Bioremed Biodeg 5:7Google Scholar
  58. van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71(4):1737–1744CrossRefGoogle Scholar
  59. Vila J, López Z, Sabaté J, Minguillón C, Solanas AM, Grifoll M (2001) Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67(12):5497–5505CrossRefGoogle Scholar
  60. Vilchez-Vargas R, Geffers R, Suárez-Diez M, Conte I, Waliczek A, Kaser VS, Kralova M, Junca H, Pieper DH (2013) Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 15(4):1016–1039CrossRefGoogle Scholar
  61. Watanabe K, Hamamura N (2003) Molecular and physiological approaches to understanding the ecology of pollutant degradation. Curr Opin Biotechnol 14(3):289–295CrossRefGoogle Scholar
  62. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R, Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL, Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJC, Seung Yoo H, Zhang C, Zhang Y, Sobral BW (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucl Acids Res 42(D1):D581–D599CrossRefGoogle Scholar
  63. Whyte LG, Smits TH, Labbé D, Witholt B, Greer CW, van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68(12):5933–5942CrossRefGoogle Scholar
  64. Xu L, Huang H, Wei W, Zhong Y, Tang B, Yuan H, Zhu L, Huang W, Ge M, Yang S, Zheng H, Jiang W, Chen D, Zhao GP, Zhao W (2014) Complete genome sequence and comparative genomic analyses of the vancomycin-producing Amycolatopsis orientalis. BMC Genom 15:363CrossRefGoogle Scholar
  65. Yang X, Xue R, Shen C, Li S, Gao C, Wang Qi, Zhao X (2011) Genome sequence of Rhodococcus sp. strain R04, a polychlorinated-biphenyl biodegrader. J Bacteriol 193(18):5032–5033CrossRefGoogle Scholar
  66. Zeinali M, Vossoughi M, Ardestani SK (2007) Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons. Lett Appl Microbiol 45(6):622–628CrossRefGoogle Scholar
  67. Zhang C, Anderson AJ (2012) Polycyclic aromatic hydrocarbon degrading gene islands in five pyrene-degrading Mycobacterium isolates from different geographic locations. Can J Microbiol 58(1):102–111CrossRefGoogle Scholar
  68. Zhang Y, Qin F, Qiao J, Li G, Shen C, Huang T, Hu Z (2012) Draft genome sequence of Rhodococcus sp. strain P14, a biodegrader of high-molecular-weight polycyclic aromatic hydrocarbons. J Bacteriol 194(13):3546CrossRefGoogle Scholar
  69. Zhao K, Guo X, Gong J (2013) A novel benzoate-degrading Rhodococcus strain contains three catA genes with one being transcriptionally active during the growth on benzoate. J Environ Biol 34(2):401–407Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Natalia Bourguignon
    • 1
  • Rafael Bargiela
    • 2
  • David Rojo
    • 3
  • Tatyana N. Chernikova
    • 4
  • Sara A. López de Rodas
    • 5
  • Jesús García-Cantalejo
    • 5
  • Daniela J. Näther
    • 6
  • Peter N. Golyshin
    • 4
  • Coral Barbas
    • 3
  • Marcela Ferrero
    • 1
  • Manuel Ferrer
    • 2
  1. 1.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)TucumánArgentina
  2. 2.Consejo Superior de Investigaciones Científicas (CSIC)Institute of CatalysisMadridSpain
  3. 3.Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de FarmaciaUniversidad CEU San PabloMadridSpain
  4. 4.School of Biological SciencesBangor UniversityGwyneddUK
  5. 5.Unidad de Genómica-Campus Moncloa, C.A.I. Genómica y Proteómica, Facultad CC. BiológicasUniversidad Complutense de MadridMadridSpain
  6. 6.Institute for Microbiology, BiocentreGoethe UniversityFrankfurtGermany

Personalised recommendations