In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties

  • Honeylet Sabas OchangcoEmail author
  • Amparo Gamero
  • Ida M. Smith
  • Jeffrey E. Christensen
  • Lene Jespersen
  • Nils ArneborgEmail author
Original Paper


In this study, 23 Debaryomyces hansenii strains, isolated from cheese and fish gut, were investigated in vitro for potential probiotic properties i.e. (1) survival under in vitro GI (gastrointestinal) conditions with different oxygen levels, (2) adhesion to Caco-2 intestinal epithelial cells and mucin, and (3) modulation of pro- and anti-inflammatory cytokine secretion by human monocyte-derived dendritic cells. As references two commercially available probiotic Saccharomyces cerevisiae var. boulardii (S. boulardii) strains were included in the study. Our results demonstrate that the different D. hansenii yeast strains had very diverse properties which could potentially lead to different probiotic effects. One strain of D. hansenii (DI 09) was capable of surviving GI stress conditions, although not to the same degree as the S. boulardii strains. This DI 09 strain, however, adhered more strongly to Caco-2 cells and mucin than the S. boulardii strains. Additionally, two D. hansenii strains (DI 10 and DI 15) elicited a higher IL-10/IL-12 ratio than the S. boulardii strains, indicating a higher anti-inflammatory effects on human dendritic cells. Finally, one strain of D. hansenii (DI 02) was evaluated as the best probiotic candidate because of its outstanding ability to survive the GI stresses, to adhere to Caco-2 cells and mucin and to induce a high IL-10/IL-12 ratio. In conclusion, this study shows that strains of D. hansenii may offer promising probiotic traits relevant for further study.


Adhesion In vitro gastrointestinal screening Immunomodulation Yeasts 



The research leading to these results was funded by the EU’s Seventh Framework Programme (FP7) under Grant agreement PITN-GA-2010-264717 for the Cornucopia project. The authors would like to thank late Professor Jure Piškur for taking initiative to the establishment of the project and Teun Boekhout at Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands for the yeast strains CBS 5307 and CBS 8339.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

11274_2016_2109_MOESM1_ESM.pdf (707 kb)
Supplementary material 1 (PDF 706 kb)


  1. Andlid T, Vázquez-Juárez R, Gustafsson L (1998) Yeasts isolated from the intestine of rainbow trout adhere to and grow in intestinal mucus. Mol Mar Biol Biotechnol 7:115–126Google Scholar
  2. Andreoletti O, Budka H, Buncic S et al (2008) The maintenance of the list of QPS microorganisms intentionally added to scientific opinion of the panel on biological hazards adopted on 10 December 2008. EFSA J 923:1–48Google Scholar
  3. Bourdichon F, Casaregola S, Farrokh C et al (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97. doi: 10.1016/j.ijfoodmicro.2011.12.030 CrossRefGoogle Scholar
  4. Breuer U, Harms H (2006) Debaryomyces hansenii—an extremophilic yeast with biotechnological potential. Yeast 23:415–437. doi: 10.1002/yea.1374 CrossRefGoogle Scholar
  5. Briske-Anderson MJ, Finley JW, Newman SM (1997) The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. Proc Soc Exp Biol Med 214:248–257CrossRefGoogle Scholar
  6. Collado MC, Gueimonde M, Salminen S (2010) Probiotics in adhesion of pathogens: mechanisms of action. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health: probiotics and prebiotics, 1st edn. Elsevier, London, pp 353–370CrossRefGoogle Scholar
  7. Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther 26:767–778. doi: 10.1111/j.1365-2036.2007.03442.x CrossRefGoogle Scholar
  8. Dancey CP, Reidy J (2004) Statistics without maths for psychology: using SPSS for windows, 3rd edn. Pearson Education Limited, LondonGoogle Scholar
  9. Didari T, Solki S, Mozaffari S et al (2014) A systematic review of the safety of probiotics. Expert Opin Drug Saf 13:227–239. doi: 10.1517/14740338.2014.872627 CrossRefGoogle Scholar
  10. Dunne C, O’Mahony L, Murphy L et al (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73:386S–392SGoogle Scholar
  11. Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 55:130–140. doi: 10.1016/j.freeradbiomed.2012.10.554 CrossRefGoogle Scholar
  12. FAO (2006) Probiotics in food. FAO Food Nutr Pap 85:1–21Google Scholar
  13. Gad M, Ravn P, Søborg DA et al (2011) Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria. FEMS Immunol Med Microbiol 63:93–107. doi: 10.1111/j.1574-695X.2011.00835.x CrossRefGoogle Scholar
  14. Gedek BR (1999) Adherence of Escherichia coli serogroup 0157 and the Salmonella Typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 42:261–264CrossRefGoogle Scholar
  15. Gori K, Knudsen PB, Nielsen KF et al (2011) Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res 11:643–652. doi: 10.1111/j.1567-1364.2011.00755.x CrossRefGoogle Scholar
  16. Guslandi M, Mezzi G, Sorghi M, Testoni PA (2000) Saccharomyces boulardii in maintenance treatment of Crohn’ s disease. Dig Dis Sci 45:1462–1464CrossRefGoogle Scholar
  17. Guslandi M, Giollo P, Testoni PA (2003) A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol 15:697–698. doi: 10.1097/01.meg.0000059138.68845.06 CrossRefGoogle Scholar
  18. Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutrients 3:637–682. doi: 10.3390/nu3060637 CrossRefGoogle Scholar
  19. Harish K, Varghese T (2006) Probiotics in humans—evidence based review. Calicut Med J 4:1–11Google Scholar
  20. Hatoum R, Labrie S, Fliss I (2012) Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 3:421. doi: 10.3389/fmicb.2012.00421 CrossRefGoogle Scholar
  21. He G, Shankar RA, Chzhan M et al (1999) Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging. Proc Natl Acad Sci USA 96:4586–4591CrossRefGoogle Scholar
  22. Isolauri E (2001) Probiotics in human disease. Am J Clin Nutr 73:1142S–1146SGoogle Scholar
  23. Israeli E, Grotto I, Gilburd B et al (2005) Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut 54:1232–1236. doi: 10.1136/gut.2004.060228 CrossRefGoogle Scholar
  24. Klingberg TD, Lesnik U, Arneborg N et al (2008) Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits. FEMS Yeast Res 8:631–640. doi: 10.1111/j.1567-1364.2008.00365.x CrossRefGoogle Scholar
  25. Kumura H, Tanoue Y, Tsukahara M et al (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87:4050–4056. doi: 10.3168/jds.S0022-0302(04)73546-8 CrossRefGoogle Scholar
  26. Lange K (2011) Fundamental role of microvilli in the main functions of differentiated cells: outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 226:896–927. doi: 10.1002/jcp.22302 CrossRefGoogle Scholar
  27. Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49:695–701. doi: 10.1111/j.1472-765X.2009.02729.x CrossRefGoogle Scholar
  28. Lichtenberger LM (1995) The hydrophobic properties of gastrointestinal mucus. Annu Rev Physiol 57:565–583CrossRefGoogle Scholar
  29. Lodemann U (2010) Effects of probiotics on intestinal transport and epithelial barrier function. In: Watson RR, Preedy VR (eds) Bioactive foods in promoting health, 1st edn. Elsevier, New York, pp 303–333CrossRefGoogle Scholar
  30. Maccaferri S, Klinder A, Brigidi P et al (2012) Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in Caco-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Appl Environ Microbiol 78:956–964. doi: 10.1128/AEM.06385-11 CrossRefGoogle Scholar
  31. Martins FS, Nardi RMD, Arantes RME et al (2005) Screening of yeasts as probiotic based on capacities to colonize the gastrointestinal tract and to protect against enteropathogen challenge in mice. J Gen Appl Microbiol 51:83–92CrossRefGoogle Scholar
  32. Mortensen HD, Gori K, Jespersen L, Arneborg N (2005) Debaryomyces hansenii strains with different cell sizes and surface physicochemical properties adhere differently to a solid agarose surface. FEMS Microbiol Lett 249:165–170. doi: 10.1016/j.femsle.2005.06.009 CrossRefGoogle Scholar
  33. Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Appl Microbiol Biotechnol 50:206–212. doi: 10.1007/s002530051278 CrossRefGoogle Scholar
  34. Nollevaux G, Devillé C, El Moualij B et al (2006) Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21). BMC Cell Biol 7:20. doi: 10.1186/1471-2121-7-20 CrossRefGoogle Scholar
  35. Oomen AG, Rompelberg CJM, Bruil MA et al (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:281–287. doi: 10.1007/s00244-002-1278-0 CrossRefGoogle Scholar
  36. Ouwehand AC, Kirjavainen PV, Gro M et al (1999) Adhesion of probiotic micro-organisms to intestinal mucus. Int Dairy J 9:623–630CrossRefGoogle Scholar
  37. Papouskova K, Sychrova H (2007) The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. Int J Food Microbiol 118:1–7. doi: 10.1016/j.ijfoodmicro.2007.04.005 CrossRefGoogle Scholar
  38. Paredes-Sabja D, Sarker MR (2012) Adherence of Clostridium difficile spores to Caco-2 cells in culture. J Med Microbiol 61:1208–1218. doi: 10.1099/jmm.0.043687-0 CrossRefGoogle Scholar
  39. Pedersen LL, Owusu-Kwarteng J, Thorsen L, Jespersen L (2012) Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. Int J Food Microbiol 159:144–151. doi: 10.1016/j.ijfoodmicro.2012.08.016 CrossRefGoogle Scholar
  40. Petersen KM, Møller PL, Jespersen L (2001) DNA typing methods for differentiation of Debaryomyces hansenii strains and other yeasts related to surface ripened cheeses. Int J Food Microbiol 69:11–24CrossRefGoogle Scholar
  41. Pontier-Bres R, Prodon F, Munro P et al (2012) Modification of Salmonella Typhimurium motility by the probiotic yeast strain Saccharomyces boulardii. PLoS ONE 7:e33796. doi: 10.1371/journal.pone.0033796 CrossRefGoogle Scholar
  42. Rege BD, Kao JPY, Polli JE (2002) Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci 16:237–246. doi: 10.1016/S0928-0987(02)00055-6 CrossRefGoogle Scholar
  43. Rigottier-Gois L (2013) Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J 7:1256–1261. doi: 10.1038/ismej.2013.80 CrossRefGoogle Scholar
  44. Sambuy Y, De Angelis I, Ranaldi G et al (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21:1–26. doi: 10.1007/s10565-005-0085-6 CrossRefGoogle Scholar
  45. Sánchez NS, Calahorra M, González-Hernández JC, Peña A (2006) Glycolytic sequence and respiration of Debaryomyces hansenii as compared to Saccharomyces cerevisiae. Yeast 23:361–374. doi: 10.1002/yea.1360 CrossRefGoogle Scholar
  46. Smith IM, Christensen JE, Arneborg N, Jespersen L (2014) Yeast modulation of human dendritic cell cytokine secretion: an in vitro study. PLoS ONE 9:e96595. doi: 10.1371/journal.pone.0096595 CrossRefGoogle Scholar
  47. Smith IM, Baker A, Arneborg N, Jespersen L (2015) Non- Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium. Lett Appl Microbiol 61:491–497. doi: 10.1111/lam.12481 CrossRefGoogle Scholar
  48. Tayal V, Kalra BS (2008) Cytokines and anti-cytokines as therapeutics–an update. Eur J Pharmacol 579:1–12. doi: 10.1016/j.ejphar.2007.10.049 CrossRefGoogle Scholar
  49. Tiago FCP, Martins FS, Souza ELS et al (2012) Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol 61:1194–1207. doi: 10.1099/jmm.0.042283-0 CrossRefGoogle Scholar
  50. Tovar-Ramírez D, Zambonino Infante J, Cahu C et al (2004) Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture 234:415–427. doi: 10.1016/j.aquaculture.2004.01.028 CrossRefGoogle Scholar
  51. Trotta F, Caldini G, Dominici L et al (2012) Food borne yeasts as DNA-bioprotective agents against model genotoxins. Int J Food Microbiol 153:275–280. doi: 10.1016/j.ijfoodmicro.2011.11.009 CrossRefGoogle Scholar
  52. Tuomola EM, Ouwehand AC, Salminen SJ (1999) The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol Med Microbiol 26:137–142CrossRefGoogle Scholar
  53. Valeriano VD, Parungao-Balolong MM, Kang DK (2014) In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. J Appl Microbiol 117:485–497. doi: 10.1111/jam.12539 CrossRefGoogle Scholar
  54. van der Aa Kühle A, Skovgaard K, Jespersen L (2005) In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. Int J Food Microbiol 101:29–39. doi: 10.1016/j.ijfoodmicro.2004.10.039 CrossRefGoogle Scholar
  55. Viljoen BC, Greyling T (1995) Yeasts associated with Cheddar and Gouda making. Int J Food Microbiol 28:79–88CrossRefGoogle Scholar
  56. Zbinden R, Gonczi EE, Altwegg M (1999) Inhibition of Saccharomyces boulardii (nom. inval.) on cell invasion of Salmonella typhimurium and Yersinia enterocolitica. Microb Ecol Health Dis 11:158–162. doi: 10.1080/089106099435736 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Honeylet Sabas Ochangco
    • 1
    Email author
  • Amparo Gamero
    • 2
  • Ida M. Smith
    • 1
    • 3
  • Jeffrey E. Christensen
    • 4
  • Lene Jespersen
    • 1
  • Nils Arneborg
    • 1
    Email author
  1. 1.Department of Food Science, Food Microbiology, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.NIZO Food ResearchEdeThe Netherlands
  3. 3.HND Discovery, Health and Nutrition DivisionHørsholmDenmark
  4. 4.Institute of Metabolic and Cardiovascular DiseaseFrench Institute of Health and Medical Research (INSERM)ToulouseFrance

Personalised recommendations