Advertisement

Genetic characterization of Microcystis aeruginosa isolates from Portuguese freshwater systems

  • Cristiana Moreira
  • Vitor Vasconcelos
  • Agostinho AntunesEmail author
Original Paper

Abstract

Cyanobacteria are microorganisms that pose a serious threat to the aquatic waterways through the production of dense blooms under eutrophic conditions and the release of toxic secondary metabolites—cyanotoxins. Within cyanobacteria, the colonial planktonic Microcystis aeruginosa is widely distributed in both fresh and brackish aquatic environments throughout the world being frequently observed in the Portuguese water systems. Apart from the well-established distribution of M. aeruginosa in Portugal, knowledge of its genetic diversity and population structure is unknown. Therefore, in this study twenty-seven strains were obtained from the North, Centre and South regions of Portugal and were subjected to extensive phylogenetic analyses using simultaneously four distinct genetic markers (16S rRNA, 16S-23S ITS, DNA gyrase subunit ß and cell division protein (ftsZ)) encompassing in total 2834 bp. With this work we characterized the phylogenetic relationship among the Portuguese strains, with the southern strains showing higher genetic structure relatively to the North and Centre strains. A total of fifteen genotypes were determined for M. aeruginosa in Portuguese water systems revealing a high genetic diversity. This is also the first study to report geographic variation on the population structure of the Portuguese M. aeruginosa.

Keywords

M. aeruginosa Microcystins Multi-gene analysis and phylogeny 

Notes

Acknowledgments

The authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia (FCT) for the PhD fellowship to Cristiana Moreira (Ref. SFRH/BD/47164/2008). Agostinho Antunes was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT and European Regional Development Fund (ERDF) in the framework of the program PT2020 and the FCT project PTDC/AAG-GLO/6887/2014.

References

  1. Bittencourt-Oliveira MC, Oliveira MC, Bolch CJS (2001) Genetic variability of Brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818CrossRefGoogle Scholar
  2. Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in Cyanobacteria. Mol Biol Evol 18(6):1057–1069CrossRefGoogle Scholar
  3. Carmichael W (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 72:445–459CrossRefGoogle Scholar
  4. Carmichael WW, Liu R (2006) Cyanobacteria toxins in the Salton Sea. Saline Syst 2(5):1–13Google Scholar
  5. Fox GE, Wisotzkey JD, Jurtshuk JRP (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Evol Microbiol 42(1):166–170Google Scholar
  6. Haande S, Ballot A, Rohrlack T, Fastner J, Wiedner C, Edvardsen B (2007) Diversity of Microcystis aeruginosa strains (Chroococcales, Cyanobacteria) from East-African water bodies. Arch Microbiol 188:15–25CrossRefGoogle Scholar
  7. Haande S, Rohrlack T, Ballot A, Røberg K, Skulberg R, Beck M, Wiedner C (2008) Genetic characterisation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Africa and Europe. Harmful Algae 7:692–701CrossRefGoogle Scholar
  8. Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286CrossRefGoogle Scholar
  9. Janse I, Kardinaal WEA, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70(7):3979–3987CrossRefGoogle Scholar
  10. Jochimsen EM, Carmichael WW, An JS, Cardo DM, Cookson ST, Holmes CE, Antunes MB, de Melo Filho DA, Lyra TM, Barreto VS, Azevedo SM, Jarvis WR (1998) Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873–878CrossRefGoogle Scholar
  11. Komárek J, Anagnostidis K (1998) Cyanoprokaryota. 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, 19/1. Spektrum Akademischer Verlag, Heidelberg, 548 ppGoogle Scholar
  12. Komárek J, Komárková J (2002) Review of the European Microcystis-morphospecies (Cyanoprokaryotes) from nature. Czech Phycol Olomouc 2:1–24Google Scholar
  13. Kondo R, Kagiya G, Hiroishi S, Watanabe M (2000) Genetic typing of a bloom-forming cyanobacterial genus Microcystis in Japan using 16S rRNA gene sequence analysis. Plankton Biol Ecol 47(1):1–6Google Scholar
  14. Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water Research B-11769, Blindern, Oslo, p 5Google Scholar
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace M, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23(21):2947–2948CrossRefGoogle Scholar
  16. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262CrossRefGoogle Scholar
  17. Martins J, Saker ML, Moreira C, Welker M, Fastner J, Vasconcelos VM (2009) Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl Microbiol Biotechnol 82(5):951–961CrossRefGoogle Scholar
  18. Moreira C, Fathalli A, Vasconcelos V, Antunes A (2011) Genetic diversity and structure of the invasive toxic cyanobacterium Cylindrospermopsis raciborskii. Curr Microbiol 62(5):1590–1595CrossRefGoogle Scholar
  19. Neilan BA, Jacobs D, Del Dot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697CrossRefGoogle Scholar
  20. Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1998) 16S rDNA sequences and phylogenetic analyses of Microcystis strains with and without phycoerythrin. FEMS Microbiol Lett 167:119–124CrossRefGoogle Scholar
  21. Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1999) Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21CrossRefGoogle Scholar
  22. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  23. Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53(2):197–207CrossRefGoogle Scholar
  24. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  25. Seo PS, Yokota A (2003) The phylogenetic relationships of cyanobacteria inferred from 16S rRNA, gyrB, rpoC1 and rpoD1 gene sequences. J Gen Appl Microbiol 49:191–203CrossRefGoogle Scholar
  26. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (Eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring, and management, world health organization, Routledge, London, pp 41–111Google Scholar
  27. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland, MassachusettsGoogle Scholar
  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 40. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  29. Tanabe Y, Kaya K, Watanabe M (2004) Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 58:633–641CrossRefGoogle Scholar
  30. Tanabe Y, Kasai F, Watanabe MM (2007) Multilocus sequence typing reveals high genetic diversity and clonal population structure of the toxic cyanobacterium Microcystis aeruginosa. Microbiology 153:3695–3703CrossRefGoogle Scholar
  31. Tanabe Y, Sano T, Kasai F, Watanabe MM (2009) Recombination, cryptic clades and neutral molecular divergence of the microcystin synthetase (mcy) genes of toxic cyanobacterium Microcystis aeruginosa. BMC Evol Biol 9:115. doi: 10.1186/1471-21-48-9-115 CrossRefGoogle Scholar
  32. Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC 7806: an integrated peptidepolyketide synthetase system. Chem Biol 7:753–764CrossRefGoogle Scholar
  33. Valério E (2008) Molecular approaches in cyanobacteria: from detection and diversity to DNA-based biosensors. Dissertation, University of Lisbon, PortugalGoogle Scholar
  34. van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer A-E, Lacerot G, De Meester L, Vyverman W (2011) Lack of phylogeographic structure in the freshwater Cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS One 6(5):e19561. doi: 10.1371/journal.pone.0019561 CrossRefGoogle Scholar
  35. Vasconcelos V (1995) Ph. D. thesis. University of Porto, PortugalGoogle Scholar
  36. Vasconcelos VM (2001) Toxic freshwater cyanobacteria and their toxins in Portugal. In: Chorus (ed) Cyanotoxins—occurrence, effects, controlling factors. Springer, Heidelberg, pp 64–69Google Scholar
  37. Vasconcelos V, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1995) Isolation and characterization of microcystins (heptapeptide hepatotoxins) from Portuguese strains of Microcystis aeruginosa Kutz. Emed Elekin. Arch Hydrobiol 134:295–305Google Scholar
  38. WHO (1998) Cyanobacterial toxins: microcystin-LR. Guideline for drinking-water quality. Addendum to Volume 2. World Health Organization, GenevaGoogle Scholar
  39. Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71(10):6126–6133CrossRefGoogle Scholar
  40. Wu Z, Shi J, Xiao P, Liu Y, Li R (2011) Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences. Harmful Algae 10:419–425CrossRefGoogle Scholar
  41. Žegura B, Štraser A, Filipič M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins—a review. Mutat Res 727(1–2):16–41Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Cristiana Moreira
    • 1
    • 2
  • Vitor Vasconcelos
    • 1
    • 2
  • Agostinho Antunes
    • 1
    • 2
    Email author
  1. 1.CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental ResearchUniversity of PortoPortoPortugal
  2. 2.Department of Biology, Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations