Advertisement

Enhanced butanol production from cassava with Clostridium acetobutylicum by genome shuffling

  • Shu-Bo Li
  • Yi Qian
  • Zheng-Wu Liang
  • Yuan Guo
  • Mou-Ming Zhao
  • Zong-Wen PangEmail author
Original Paper

Abstract

To obtain strains exhibiting high levels of solvent tolerance and butanol production, wild type strains of Clostridium acetobutylicum butanol-producing strain GX01 and Lactobacillus mucosae butanol-tolerant strain M26 were subjected to mutagenesis combining N-methyl-N-nitro-N-nitrosoguanidine induction with genome shuffling. After four successive rounds of genome shuffling, the C. acetobutylicum shuffled strain GS4-3 showing greater levels of fermentation performances (such as secreting a higher level of amylase, improving the thermal stability, and possessing greater environmental robustness) compared to the wild type strains was isolated. As a result, after optimization of culture conditions, mutant GS4-3 produced 32.6 g/L of total solvent, 20.1 g/L of butanol production, and 0.35 g/L/h of butanol productivity, which were, respectively, increased by 23.5, 23.3, and 40.0 % than the wild-type strain GX01, in a 10 L bioreactor. The enhanced production of butanol and tolerance of solvent of mutant associated with GS4-3 make it promising for acetone/butanol/ethanol fermentation from cassava (Manihot esculenta).

Graphical Abstract

Compared to the parental strain (blue), the shuffled strain exhibited the more excellent performances for butanol production from different carbon sources.

Keywords

Butanol Cassava Clostridium acetobutylicum N-methyl-N-nitro-N-nitrosoguanidine mutation Genome shuffling 

Notes

Acknowledgments

This research was financially supported by the key Project of Guangxi Science and Technology Lab Center (LGZX201006), the National Natural Science Foundation of China (31560027), and the “Bagui Scholars Distinguished Professor” Special Project.

Supplementary material

11274_2016_2022_MOESM1_ESM.docx (12.8 mb)
Supplementary material 1 (DOCX 13138 kb)

References

  1. Baral NR, Shah A (2014) Microbial inhibitors: formation and effects on acetone–butanol–ethanol fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 98:9151–9172CrossRefGoogle Scholar
  2. Bauer R, Katsikis N, Varga S, Hekmat D (2005) Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess Biosyst Eng 28:37–43CrossRefGoogle Scholar
  3. Biot-Pelletier D, Martin VJJ (2014) Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 98:3877–3887CrossRefGoogle Scholar
  4. Chalopagorn P, Charoenpanich J, Choowongkomon K (2014) Genome shuffling enhances lipase production of Thermophilic Geobacillus sp. Appl Biochem Biotechnol 174:1444–1454CrossRefGoogle Scholar
  5. Choi GW, Um HJ, Kim Y, Kang HW, Kim M, Chung BW, Kim YH (2010) Isolation and characterization of two soil derived yeasts for bioethanol production on cassava starch. Biomass Bioenergy 34:1223–1231CrossRefGoogle Scholar
  6. Dai D, Hu ZY, Pu GQ, Li H, Wang CT (2006) Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers Manag 47:1686–1699CrossRefGoogle Scholar
  7. Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefGoogle Scholar
  8. Gao XF, Zhao H, Zhang GH, He KZ, Jin YL (2012) Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone–butanol–ethanol (ABE). Curr Microbiol 65:128–132CrossRefGoogle Scholar
  9. Gong GL, Wang CL, Chen MH, Chen ZQ, Wang YR (2008) Genome shuffling to improve the ethanol production of Saccharomyces cerevisiae. J Biotechnol 136:S311–S312CrossRefGoogle Scholar
  10. Gong J, Zheng H, Wu Z, Chen T, Zhao X (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 27:996–1005CrossRefGoogle Scholar
  11. Gu Y, Hu S, Chen J, Shao L, He H, Yang Y, Yang S, Jiang W (2009) Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA 2018 using cassava as a fermentation medium. J Ind Microbiol Biotechnol 36:1225–1232CrossRefGoogle Scholar
  12. Guo T, Sun BJ, Jiang M, Wu H, Du TF, Tang Y, Wei P, Ouyang PK (2012a) Enhancement of butanol production and reducing power using a two-stage controlled-pH strategy in batch culture of Clostridium acetobutylicum XY16. World J Microbiol Biotechnol 28:2551–2558CrossRefGoogle Scholar
  13. Guo T, Tang Y, Zhang QY, Du TF, Liang DF, Jiang M, Ouyang PK (2012b) Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. J Ind Microbiol Biotechnol 39:401–407CrossRefGoogle Scholar
  14. Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393CrossRefGoogle Scholar
  15. Jiang M, Chen JN, He AY, Wu H, Kong XP, Liu JL, Yin CY, Chen WF, Chen P (2014) Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochem 49:1238–1244CrossRefGoogle Scholar
  16. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20CrossRefGoogle Scholar
  17. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228CrossRefGoogle Scholar
  18. Li HG, Luo W, Gu QY, Wang Q, Hu WJ, Yu XB (2013) Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction. Bioresour Technol 137:254–260CrossRefGoogle Scholar
  19. Li SB, Guo Y, Lu FZ, Huang JJ, Pang ZW (2015) High-level butanol production from cassava starch by a newly isolated Clostridium acetobutylicum. Appl Biochem Biotech. 177:831–841CrossRefGoogle Scholar
  20. Liu ZY, Ying Y, Li FL, Ma CQ, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501CrossRefGoogle Scholar
  21. Mann MS, Dragovic Z, Schirrmacher G, Lutke-Eversloh T (2012) Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress. Biotechnol Lett 34:1643–1649CrossRefGoogle Scholar
  22. Minton NP, Morris JG (1983) Regeneration of protoplasts of Clostridium pasteurianum ATCC 6013. J Bacteriol 155:432–434Google Scholar
  23. Ni Y, Wang Y, Sun ZH (2012) Butanol production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation. Appl Biochem Biotech. 166:1896–1907CrossRefGoogle Scholar
  24. Olano C, Lombo F, Mendez C, Salas JA (2008) Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292CrossRefGoogle Scholar
  25. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712CrossRefGoogle Scholar
  26. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427CrossRefGoogle Scholar
  27. Thang VH, Kanda K, Kobayashi G (2010) Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 161:157–170CrossRefGoogle Scholar
  28. Wang LM, Zhao B, Liu B, Yang CY, Yu B, Li QG, Ma CQ, Xu P, Ma YH (2010) Efficient production of l-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresour Technol 101:7895–7901CrossRefGoogle Scholar
  29. Wang C, Wu GZ, Li YD, Huang YY, Zhang FM, Liang XL (2013) Genome shuffling of Penicillium citrinum for enhanced production of nuclease P1. Appl Biochem Biotechnol 170:1533–1545CrossRefGoogle Scholar
  30. Yu GH, Hu YS, Hui M, Chen L, Wang L, Liu N, Yin YL, Zhao J (2014) Genome shuffling of Streptomyces roseosporus for improving daptomycin production. Appl Biochem Biotechnol 172:2661–2669CrossRefGoogle Scholar
  31. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646CrossRefGoogle Scholar
  32. Zheng HJ, Gong JX, Chen T, Chen X, Zhao XM (2010) Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of d-lactic acid by genome shuffling. Appl Microbiol Biotechnol 85:1541–1549CrossRefGoogle Scholar
  33. Zheng P, Zhang KK, Yan Q, Xu Y, Sun ZH (2013) Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. J Ind Microbiol Biotechnol 40:831–840CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Shu-Bo Li
    • 2
  • Yi Qian
    • 1
  • Zheng-Wu Liang
    • 1
  • Yuan Guo
    • 3
  • Mou-Ming Zhao
    • 2
  • Zong-Wen Pang
    • 1
    Email author
  1. 1.College of Life Science and TechnologyGuangxi UniversityNanningChina
  2. 2.College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
  3. 3.National Engineering Research Center for Non-Food BiorefineryGuangxi Academy of SciencesNanningChina

Personalised recommendations