Nutrient scavenging activity and antagonistic factors of non-photobiont lichen-associated bacteria: a review

  • M. Auður Sigurbjörnsdóttir
  • Ólafur S. Andrésson
  • Oddur Vilhelmsson


Lichens are defined as the specific symbiotic structure comprising a fungus and a green alga and/or cyanobacterium. Up until recently, non-photobiont endothallic bacteria, while known to be present in large numbers, have generally been dismissed as functionally irrelevant cohabitants of the lichen thallus, or even environmental contaminants. Recent analyses of lichen metagenomes and innovative co-culture experiments have uncovered a functionally complex community that appears to contribute to a healthy lichen thallus in several ways. Lichen-associated bacteriomes are typically dominated by several lineages of Proteobacteria, some of which may be specific for lichen species. Recent work has implicated members of these lineages in several important ecophysiological roles. These include nutrient scavenging, including mobilization of iron and phosphate, nitrogen fixation, cellulase, xylanase and amylase activities, and oxidation of recalcitrant compounds, e.g. aromatics and aliphatics. Production of volatile organic compounds, conferring antibacterial and antifungal activity, has also been demonstrated for several lichen-associated isolates. In the present paper we review the nature of non-phototrophic endolichenic bacteria associated with lichens, and give insight into the current state of knowledge on their importance the lichen symbiotic association.


Lichen Bacteria Symbiosis Endothallic Microbiome 


  1. Ahmadjian V (1995) Lichens are more important than you think. Bioscience 45:124CrossRefGoogle Scholar
  2. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  3. Arul Jose P, Jebakumar SRD (2013) Non-streptomycete actinomycetes nourish the current microbial antibiotic drug discovery. Front Microbiol. doi: 10.3389/fmicb.2013.00240 Google Scholar
  4. Aschenbrenner IA, Cardinale M, Berg G, Grube M (2014) Microbial cargo: Do bacteria on symbiotic propagules reinforce the microbiome of lichens? Environ Microbiol 16:3743–3752CrossRefGoogle Scholar
  5. Bates ST, Cropsey GWG, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314CrossRefGoogle Scholar
  6. Beckett RP, Kranner I, Minibayeva FV (2008) Stress physiology and the symbiosis. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, New York, pp 134–151CrossRefGoogle Scholar
  7. Beckett RP, Zavarzina AG, Liers C (2013) Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover. Fungal Biol 117:431–438CrossRefGoogle Scholar
  8. Benner JW, Vitousek PM (2007) Development of a diverse epiphyte community in response to phosphorus fertilization. Ecol Lett 10:628–636CrossRefGoogle Scholar
  9. Benner JW, Conroy S, Lunch CK, Toyoda N, Vitousek PM (2007) Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocypellaria crocata in Hawaiian montane forests. Biotropica 36:400–405CrossRefGoogle Scholar
  10. Bjelland T, Grube M, Hoem S, Jorgensen SL, Daae FL, Thorseth IH, Ovreas L (2011) Microbial metacommunities in the lichen-rock habitat. Environ Microbiol Rep 3:434–442CrossRefGoogle Scholar
  11. Büdel B, Scheidegger C (2008) Thallus morhpology and anatomy. In: Nash TH (ed) Lichen biology. Cambridge University Press, New York, pp 40–68CrossRefGoogle Scholar
  12. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57(2):229–247CrossRefGoogle Scholar
  13. Cardinale M, Puglia AM, Grube M (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol Ecol 57:484–495CrossRefGoogle Scholar
  14. Cardinale M, de Castro JV Jr, Muller H, Berg G, Grube M (2008) In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol Ecol 66:63–71CrossRefGoogle Scholar
  15. Cardinale M, Grube M Jr, de Castro JV Jr, Mueller H, Berg G (2012a) Bacterial taxa associated with the lung lichen Lobaria pulmonaria are differentially shaped by geography and habitat. FEMS Microbiol Lett 329:111–115CrossRefGoogle Scholar
  16. Cardinale M, Steinova J, Rabensteiner J, Berg G, Grube M (2012b) Age, sun and substrate: triggers of bacterial communities in lichens. Environ Microbiol Rep 4:23–28CrossRefGoogle Scholar
  17. Cernava T, Aschenbrenner IA, Grube M, Liebminger S, Berg G (2015a) A novel assay for detection of bioactive volatiles evaluated by screening of lichen-associated bacteria. Front Microbiol 6:398Google Scholar
  18. Cernava T, Muller H, Aschenbrenner IA, Grube M, Berg G (2015b) Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Front Microbiol 6:620Google Scholar
  19. Chhabra S, Brazil D, Morrissey J, Burke JI, O’Gara F, Dowling DN (2013) Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. Microbiologyopen 2:717–724Google Scholar
  20. Dahlmann L, Persson J, Palmqvist K (2004) Organic and inorganic nitrogen uptake in lichens. Planta 219:459–467CrossRefGoogle Scholar
  21. Davies J, Wang H, Taylor T, Warabi K, Huang X-H, Andersen RJ (2005) Uncialamycin, a new enediyne antibiotic. Org Lett 7:5233–5236. doi: 10.1021/ol052081f CrossRefGoogle Scholar
  22. Erlacher A, Cernava T, Cardinale M, Soh J, Sensen CW, Grube M, Berg G (2015) Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol 6:53CrossRefGoogle Scholar
  23. Farrar JF (1976) The uptake and metabolism of phosphate by the lichen Hypogymnia physodes. New Phytol 77:127–134CrossRefGoogle Scholar
  24. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefGoogle Scholar
  25. Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12(2):185–193CrossRefGoogle Scholar
  26. González I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415CrossRefGoogle Scholar
  27. Green TGA, Nash TH, Lange OL (2008) Physiological ecology of carbon dioxide exchange. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, New York, pp 152–181CrossRefGoogle Scholar
  28. Grube M, Berg G (2009) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85CrossRefGoogle Scholar
  29. Grube M, Cardinale M, de Castro JV Jr, Mueller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115CrossRefGoogle Scholar
  30. Grube M, Koeberl M, Lackner S, Berg C, Berg G (2012) Host–parasite interaction and microbiome response: effects of fungal infections on the bacterial community of the Alpine lichen Solorina crocea. FEMS Microbiol Ecol 82:472–481CrossRefGoogle Scholar
  31. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424CrossRefGoogle Scholar
  32. Gryndler M, Hršelová H, Chvátalová I, Jansa J (1998) The effect of selected plant hormones on in vitro proliferation of hyphae of Glomus fistulosum. Biol Plant 41:255–263CrossRefGoogle Scholar
  33. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. doi: 10.1007/s13213-010-0117-1 CrossRefGoogle Scholar
  34. Henkel PA, Plotnikova TT (1936) Nitrogen-fixing bacteria in lichens. Izv Ross Akad Nauk Seriya Biol 10:9–10Google Scholar
  35. Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180CrossRefGoogle Scholar
  36. Hodkinson BP, Gottel NR, Schadt CW, Lutzoni F (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environ Microbiol 14:147–161CrossRefGoogle Scholar
  37. Honegger R (1991) Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578. doi: 10.1146/annurev.pp.42.060191.003005 CrossRefGoogle Scholar
  38. Huneck S (1999) The significance of lichens and their metabolites. Natur Wissenschaften 86:559–570CrossRefGoogle Scholar
  39. Iskina RY (1938) On nitrogen fixing bacteria in lichens. Isv Biol Inst Permsk 11:133–139Google Scholar
  40. Johansson O, Nordin A, Olofsson J, Palmqvist K (2010) Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytol 188:1075–1084CrossRefGoogle Scholar
  41. Johansson O, Olofsson J, Giesler R, Palmqvist K (2011) Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytol 191:795–805CrossRefGoogle Scholar
  42. Kim MK, Park H, Oh TJ (2014) Antibacterial and antioxidant capacity of polar microorganisms isolated from Arctic lichen Ochrolechia sp. Pol J Microbiol 63:317–322CrossRefGoogle Scholar
  43. Kneip C, Lockhart P, Voß C, Maier U (2007) Nitrogen fixation in eukaryotes—new models for symbiosis. BMC Evol Biol 7:55–67CrossRefGoogle Scholar
  44. Lau S, Shao N, Bock R, Jürgens G, De Smet I (2009) Auxin signaling in algal lineages: Fact or myth? Trends Plant Sci 14:182–188. doi: 10.1016/j.tplants.2009.01.004 CrossRefGoogle Scholar
  45. Lee YM, Kim EH, Lee HK, Hong SG (2014) Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria. World J Microbiol Biotechnol 30:2711–2721CrossRefGoogle Scholar
  46. Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086CrossRefGoogle Scholar
  47. McCune B, Caldwell BA (2009) A single phosphorus treatment doubles growth of cyanobaeterial lichen transplants. Ecology 90:567–570. doi: 10.1890/08-0344.1 CrossRefGoogle Scholar
  48. Morley SE, Gibson M (2004) Cool temperate rainforest lichens of Victoria, Australia: floristics and distribution. Bryologist 107(1):62–74CrossRefGoogle Scholar
  49. Muggia L, Klug B, Berg G, Grube M (2013) Localization of bacteria in lichens from Alpine soil crusts by fluorescence in situ hybridization. Appl Soil Ecol 68:20–25CrossRefGoogle Scholar
  50. Müller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16CrossRefGoogle Scholar
  51. Mushegian AA, Peterson CN, Baker CCM, Pringle A (2011) Bacterial diversity across individual lichens. Appl Environ Microbiol 77:4249–4252CrossRefGoogle Scholar
  52. Nash TH (2008a) Introduction. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 1–8CrossRefGoogle Scholar
  53. Nash TH (2008b) Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash TH (ed) Lichen biology, 2nd edn. Cambridge University Press, New York, pp 216–233CrossRefGoogle Scholar
  54. Øvstedal DO, Smith RIL (2001) Lichens of Antarctica and South Georgia. Cambrigde University Press, New York, p 411Google Scholar
  55. Palmqvist K (2000) Tansley Review No. 117 Carbon economy in lichens. New Phytol 148:11–36CrossRefGoogle Scholar
  56. Palmqvist K, Dahlman L, Jonsson A, Nash TH (2008) The carbon economy of lichens. In: Nash TH (ed) Lichen biology. Cambridge University Press, New York, pp 182–215CrossRefGoogle Scholar
  57. Pankratov TA (2012) Acidobacteria in microbial communities of the bog and tundra lichens. Microbiology 81:51–58CrossRefGoogle Scholar
  58. Panosyan AK, Nikogosyan VG (1966) The presence of Azotobacter in lichens. Akad Nauk Armian SSR Biol Zhurn Armen 19:3–11Google Scholar
  59. Portillo MC, Villahermosa D, Corzo A, Gonzalez JM (2011) Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Appl Environ Microbiol 77:351–354. doi: 10.1128/AEM.01316-10 CrossRefGoogle Scholar
  60. Printzen C (2008) Uncharted terrain: the phylogeography of arctic and boreal lichens. Plant Ecol Divers 1(2):265–271. doi: 10.1080/17550870802328702 CrossRefGoogle Scholar
  61. Printzen C, Fernandez-Mendoza F, Muggia L, Berg G, Grube M (2012) Alphaproteobacterial communities in geographically distant populations of the lichen Cetraria aculeata. FEMS Microbiol Ecol 82:316–325CrossRefGoogle Scholar
  62. Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil micro-organisms. Plant Soil 229:47–56CrossRefGoogle Scholar
  63. Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 31–72Google Scholar
  64. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339. doi: 10.1016/S0734-9750(99)00014-2 CrossRefGoogle Scholar
  65. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  66. Sancho LG, Maestre FT, Büdel B (2014) Biological soil crusts in a changing world: introduction to the special issue. Biodivers Conserv 23:1611–1617. doi: 10.1007/s10531-014-0727-1 CrossRefGoogle Scholar
  67. Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12Google Scholar
  68. Schneider T, Schmid E, de Castro JV Jr, Cardinale M, Eberl L, Grube M, Berg G, Riedel K (2011) Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. Proteomics 11:2752–2756CrossRefGoogle Scholar
  69. Selbmann L, Zucconi L, Ruisi S, Grube M, Cardinale M, Onofri S (2010) Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. Polar Biol 33:71–83CrossRefGoogle Scholar
  70. Sharma S, Sayyed R, Trivedi M, Gobi T (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587CrossRefGoogle Scholar
  71. Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52. doi: 10.5829/idosi.ijmr.2012.3.1.61103 Google Scholar
  72. Sigurbjörnsdóttir MA, Heiðmarsson S, Jónsdóttir AR, Vilhelmsson O (2014) Novel bacteria associated with Arctic seashore lichens have potential roles in nutrient scavenging. Can J Microbiol 60:307–317CrossRefGoogle Scholar
  73. Sigurbjörnsdóttir MA, Andrésson OS, Vilhelmsson O (2015) Analysis of the Peltigera membranacea metagenome indicates that lichen-associated bacteria are involved in phosphate solubilization. Microbiol 161:898–996. doi: 10.1099/mic.0.000069 CrossRefGoogle Scholar
  74. Smith DC (1960) Studies in the physiology of lichens. Ann Bot 24:186–199Google Scholar
  75. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi: 10.1111/j.1574-6976.2007.00072.x CrossRefGoogle Scholar
  76. Uphof JCT (1925) Purple bacteria as symbionts of a lichen. Science 61(1568):67.doi: 10.1126/science.61.1568.67 CrossRefGoogle Scholar
  77. Yamamura H, Ashizawa H, Nakagawa Y, Hamada M, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2011) Actinomycetospora iriomotensis sp. nov., a novel actinomycete isolated from a lichen sample. J Antibiot 64:289–292CrossRefGoogle Scholar
  78. Zhao K, Penttinen P, Zhang X, Ao X, Liu M, Yu X, Chen Q (2014) Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res 169:76–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Auður Sigurbjörnsdóttir
    • 1
    • 2
  • Ólafur S. Andrésson
    • 2
    • 3
  • Oddur Vilhelmsson
    • 1
    • 3
  1. 1.Department of Natural Resource SciencesUniversity of AkureyriAkureyriIceland
  2. 2.Faculty of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
  3. 3.Biomedical CenterUniversity of IcelandReykjavíkIceland

Personalised recommendations