Advertisement

Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions

  • María Laura Pérez
  • Mónica Mariana Collavino
  • Pedro Alfonso Sansberro
  • Luis Amado Mroginski
  • Ernestina GaldeanoEmail author
Original Paper

Abstract

The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

Keywords

Endophytes Yerba mate Fungal diversity Bacterial diversity PGPB 

Notes

Acknowledgments

The authors would like to thank Ing. Dora Barreto for the invaluable help in fungi isolation and identification. M. Collavino, P. Sansberro, L. Mroginski, and E. Galdeano are members of the Research Council of Argentina (CONICET).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11274_2016_2016_MOESM1_ESM.jpg (827 kb)
Online resource 1 Pathogenicity test of endophytic Fusarium isolates. Symptoms of in vitro yerba mate plantlets inoculated with b. Fusarium oxysporum (g1, accession number KP195150), c. Fusarium fujikuroi (vc6, KP195148), d. Fusarium lateriticum (vc7, KP195155), a. mock-inoculated (control) (JPEG 826 kb)

References

  1. Alippi AM, Aguilar OM (1998) Characterization of isolates of Paenibacillus larvae subsp. larvae from diverse geographical origin by the polymerase chain reaction and BOX primers. J Invertebr Pathol 72:21–27CrossRefGoogle Scholar
  2. Araujo WL, Marcon J, Maccheroni W Jr, Elsas JDV, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in Citrus plants. Appl Environ Microbiol 68:4906–4914. doi: 10.1128/AEM.68.10.4906-4914.2002 CrossRefGoogle Scholar
  3. Bacon CW, Hinton DM (2006) Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, The Netherlands, pp 155–194. doi: 10.1007/978-1-4020-4538-7_5 CrossRefGoogle Scholar
  4. Bacon CW, Glenn AE, Hinton DM (2002) Isolation, in planta, detection, and culture of endophytic bacteria and fungi. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology, 2nd edn. ASM Press, Washington, pp 543–553Google Scholar
  5. Bangera MG, Thomashow LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2–87. Mol Plant Microbe Interact 9:83–90CrossRefGoogle Scholar
  6. Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals 14:33–42. doi: 10.1023/A:1016687021803 CrossRefGoogle Scholar
  7. Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470CrossRefGoogle Scholar
  8. Bowman KO, Hutcheson K, Odum EP, Shenton LR (1971) Comments on the distribution of indices of diversity. In: Patil GP, Pielou EC, Waters WE (eds) Many species populations, ecosystems, and systems analysis. Statistical ecology 3. Penn State University Press, Harrisburg, pp 315–366Google Scholar
  9. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37CrossRefGoogle Scholar
  10. Carroll GC, Carroll FE (1978) Studies on the incidence of coniferous needle endophytes in the Pacific Northwest. Can J Bot 56:3034–3043. doi: 10.1139/b78-367 CrossRefGoogle Scholar
  11. Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:9CrossRefGoogle Scholar
  12. Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738. doi: 10.1007/s00374-010-0480-x CrossRefGoogle Scholar
  13. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. doi: 10.1146/annurev.micro.61.080706.093316 CrossRefGoogle Scholar
  14. Deng BV, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25:139–143. doi: 10.1007/s11274-008-9876-2 CrossRefGoogle Scholar
  15. Dhingra OD, Sinclair JB (1985) Basic plant pathology methods. CRC Press, Boca RatonGoogle Scholar
  16. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2014) InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  17. Ding T, Palmer MW, Melcher U (2013) Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiol 13:1–11. doi: 10.1186/1471-2180-13-1 CrossRefGoogle Scholar
  18. Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas ñao leguminosas. EMBRAPA-SPI, Brasilia, pp 11–60Google Scholar
  19. Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic Press, LondonGoogle Scholar
  20. Dourado MN, Andreote FD, Dini-Andreote F, Conti R, Araujo JM, Araujo WL (2012) Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association. Genet Mol Biol 35:142–148CrossRefGoogle Scholar
  21. Ellis MB (1971) Dematiaceus hyphomycetes. CAB International Micological Institute, KewGoogle Scholar
  22. Ellis MB (1976) More dematiaceous hyphomycetes. CAB International Mycological Institute, KewGoogle Scholar
  23. El-Shatoury SA, El-Kraly OA, Trujillo ME, El-Kazzaz WM, Gamal El-Din E, Dewedar A (2013) Generic and functional diversity in endophytic actinomycetes from wild Compositae plant species at South Sinai–Egypt. Res Microbiol 164:761–769CrossRefGoogle Scholar
  24. Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo JL, Araujo WL (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14. doi: 10.1111/j.1574-6968.2008.01258.x CrossRefGoogle Scholar
  25. Filip R, Lopez P, Giberti G, Coussio J, Ferraro G (2001) Phenolic compounds in seven South American Ilex species. Fitoterapia 72:774–778. doi: 10.1016/S0367-326X(01)00331-8 CrossRefGoogle Scholar
  26. Fisher PJ, Petrini O, Sutton BC (1993) A comparative study of fungal endophytes in leaves, xylem and bark of Eucalyptus in Australia and England. Sydowia 45:338–345Google Scholar
  27. Fokkema NJ (1978) Fungal antagonisms in the phyllosphere. Ann Appl Biol 89:115–119CrossRefGoogle Scholar
  28. Gagne-Bourgue F, Aliferis KA, Seguin P, Rani M, Samson R, Jabaji S (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114:836–853. doi: 10.1111/jam.12088 CrossRefGoogle Scholar
  29. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17CrossRefGoogle Scholar
  30. Guo L-D, Huang G-R, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling mountains, Beijing. J Integr Plant Biol 50:997–1003. doi: 10.1111/j.1744-7909.2008.00394.x CrossRefGoogle Scholar
  31. Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I, Sohn E-Y, Hwang Y-H, Shin D-H, Lee B-H, Kim J-G, Lee I-J (2009) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632. doi: 10.1007/s11274-009-9982-9 CrossRefGoogle Scholar
  32. Hanada RE, Pomella AW, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflora (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol 114:901–910. doi: 10.1016/j.funbio.2010.08.006 CrossRefGoogle Scholar
  33. Hurek T, Handley LL, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242CrossRefGoogle Scholar
  34. Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085CrossRefGoogle Scholar
  35. Jin H, Yang XY, Yan ZQ, Liu Q, Li XZ, Chen JX, Zhang DH, Zeng LM, Qin B (2014) Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Syst Appl Microbiol 37:376–385CrossRefGoogle Scholar
  36. Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513. doi: 10.1175/2010JCLI3208.1 CrossRefGoogle Scholar
  37. Kharwar RN, Gond SK, Kumar A, Mishra A (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948. doi: 10.1007/s11274-010-0374-y CrossRefGoogle Scholar
  38. Kim C-K, Eo J-K, Eom A-H (2013) Diversity and seasonal variation of endophytic fungi isolated from three conifers in Mt. Taehwa, Korea. Mycobiology 41:82–85. doi: 10.5941/MYCO.2013.41.2.82 CrossRefGoogle Scholar
  39. Klement Z (1963) Rapid detection of the pathogenicity of phytopathogenic pseudomonads. Nature 199:299–300CrossRefGoogle Scholar
  40. Kuldau G, Yates IE (2000) Evidence for Fusarium endophytes in cultivated and wild plants. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Dekker, New York, pp 85–117Google Scholar
  41. La Mondia JA, Taylor GS (1987) Influence of the tobacco cyst nematode (Globodera tabacum) on Fusarium wilt of Connecticut broadleaf tobacco. Plant Dis 71:1129–1132CrossRefGoogle Scholar
  42. Lacava PT, Li W, Araujo WL, Azevedo JL, Hartung JS (2007) The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. J Microbiol 45:388–393Google Scholar
  43. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, AmesCrossRefGoogle Scholar
  44. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883CrossRefGoogle Scholar
  45. Luna C, Acevedo R, Collavino M, Gonzalez A, Mroginski L, Sansberro P (2013) Endophytic bacteria from Ilex paraguariensis shoot cultures: localization, characterization, and response to isothiazolone biocides. In Vitro Cell Dev Biol Plant 49:326–332. doi: 10.1007/s11627-013-9500-5 CrossRefGoogle Scholar
  46. Lysiak E (2012a) Los cuatro principales eslabones de la cadena de la yerba mate. In: Bongiovanni R, Morandi J, Troilo L (eds) Competitividad y calidad de los cultivos industriales: Caña de azúcar, mandioca, maní, tabaco, té y yerba mate. Ediciones INTA, Cordoba, pp 189–198Google Scholar
  47. Lysiak E (2012b) Escenario del mercado de la yerba mate 2011. In: Bongiovanni R, Morandi J, Troilo L (eds) Competitividad y calidad de los cultivos industriales: Caña de azúcar, mandioca, maní, tabaco, té y yerba mate. Ediciones INTA, Cordoba, pp 198–205Google Scholar
  48. Ma B, Lv X, Warren A, Gong J (2013) Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104:759–768CrossRefGoogle Scholar
  49. Madhaiyan M, Poonguzhali S, Ryu J, As T (2004) Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot Bull Acad Sin 45:315–324Google Scholar
  50. Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258CrossRefGoogle Scholar
  51. McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust J Plant Physiol 28:983–990. doi: 10.1071/PP01101 Google Scholar
  52. Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56CrossRefGoogle Scholar
  53. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  54. Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391. doi: 10.3852/07-110R1 CrossRefGoogle Scholar
  55. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676Google Scholar
  56. Pimentel IC, Kuczkowski FR, Chime MA (2006) Fungos endofiticos em folhas de erva-mate (Ilex paraguariensis A. St.-Hil). Floresta 36:123–128CrossRefGoogle Scholar
  57. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315. doi: 10.1146/annurev-phyto-080508-081831 CrossRefGoogle Scholar
  58. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837. doi: 10.1094/MPMI-19-0827 CrossRefGoogle Scholar
  59. Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araujo WL, Dos Santos DR, Azevedo JL (2005) Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches’ Broom Disease. Int J Biol Sci 1:24–33CrossRefGoogle Scholar
  60. Rybakova D, Wetzlinger U, Müller H, Berg G (2015) Complete genome sequence of Paenibacillus polymyxa strain sb3-1, a soilborne bacterium with antagonistic activity toward plant pathogens. Genome Announc 3:e00052-15. doi: 10.1128/genomeA.00052-15 CrossRefGoogle Scholar
  61. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  62. Sansberro PA, Rey HY, Bernardis A, Luna C, Collavino M, Mroginski LA (2000) Plant regeneration of Ilex paraguariensis (Aquifoliaceae) by in vitro culture of nodal segments. Biocell 24:53–63Google Scholar
  63. Schinella G, Fantinelli JC, Mosca SM (2005) Cardioprotective effects of Ilex paraguariensis extract: evidence for a nitric oxide dependent mechanism. Clin Nutr 24:360–366. doi: 10.1016/j.clnu.2004.11.013 CrossRefGoogle Scholar
  64. Scholtysik A, Unterseher M, Otto P, Wirth C (2013) Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior). Mycol Prog 12:291–304. doi: 10.1007/s11557-012-0835-9 CrossRefGoogle Scholar
  65. Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle CJ, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13CrossRefGoogle Scholar
  66. Sette LD, Passarini MRZ, Delarmelina C, Salati F, Duarte MCT (2006) Molecular characterization and antimicrobial activity of endophytic fungi from coffee plants. World J Microbiol Biotechnol 22:1185–1195. doi: 10.1007/s11274-006-9160-2 CrossRefGoogle Scholar
  67. Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15 N2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif-mutant strains. Mol Plant Microbe Interact 14:358–366. doi: 10.1094/MPMI.2001.14.3.358 CrossRefGoogle Scholar
  68. Shiono Y, Tsuchinari M, Shimanuki K, Miyajima T, Murayama T, Koseki T, Laatsch H, Takanami K, Suzuki K (2007) Fusaristatins A and B, two new cyclic lipopeptides from an endophytic Fusarium sp. J Antibiot 60:309. doi: 10.1038/ja.2007.39 CrossRefGoogle Scholar
  69. Suryanarayanan TS, Vijaykrishna D (2001) Fungal endophytes of aerial roots of Ficus benghalensis. Fungal Divers 8:155–161Google Scholar
  70. Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, Prin Y, Neyra M, Gillis M, Bivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220. doi: 10.1128/JB.183.1.214-220.2001 CrossRefGoogle Scholar
  71. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefGoogle Scholar
  72. Thomas P, Kumari S, Swarna GK, Gowda TKS (2006) Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host–endophyte interaction in vitro and in vivo. Can J Microbiol 53:380–390. doi: 10.1139/W06-141 CrossRefGoogle Scholar
  73. Videira SS, de Araujo JL, da Rodrigues LS, Baldani VL, Baldani JI (2009) Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293:11–19. doi: 10.1111/j.1574-6968.2008.01475.x CrossRefGoogle Scholar
  74. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar
  75. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322Google Scholar
  76. Zhao Y, Selvaraj JN, Xing F, Zhou L, Wang Y, Song H, Tan X, Sun L, Sangare L, Folly YME, Liu Y (2014) Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum. PLoS ONE 9:e92486. doi: 10.1371/journal.pone.0092486 CrossRefGoogle Scholar
  77. Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarsk D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. App Environ Microbiol 68:2198–2208. doi: 10.1128/AEM.68.5.2198-2208.2002 CrossRefGoogle Scholar
  78. Zum Felde A, Pocasangre LE, Carnizares Monteros CA, Sikora RA, Rosales FE, Riveros AS (2006) Effect of combined inoculations of endophytic fungi on the biocontrol of Radopholus similis. Info Musa 15:12–17Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • María Laura Pérez
    • 1
  • Mónica Mariana Collavino
    • 1
  • Pedro Alfonso Sansberro
    • 1
  • Luis Amado Mroginski
    • 1
  • Ernestina Galdeano
    • 1
    Email author
  1. 1.Facultad de Ciencias Agrarias (UNNE)Instituto de Botánica del Nordeste, UNNE-CONICETCorrientesArgentina

Personalised recommendations