Advertisement

Sebacina vermifera: a unique root symbiont with vast agronomic potential

  • Prasun Ray
  • Kelly D. Craven
Review

Abstract

The Sebacinales belong to a taxonomically, ecologically, and physiologically diverse group of fungi in the Basidiomycota. While historically recognized as orchid mycorrhizae, recent DNA studies have brought to light both their pandemic distribution and the broad spectrum of mycorrhizal types they form. Indeed, ecological studies using molecular-based methods of detection have found Sebacinales fungi in field specimens of bryophytes (moss), pteridophytes (fern) and all families of herbaceous angiosperms (flowering plants) from temperate, subtropical and tropical regions. These natural host plants include, among others, liverworts, wheat, maize and Arabidopsis thaliana, the model plant traditionally viewed as non-mycorrhizal. The orchid mycorrhizal fungus Sebacina vermifera (MAFF 305830) was first isolated from the Australian orchid Cyrtostylis reniformis. Research performed with this strain clearly indicates its plant growth promoting abilities in a variety of plants, while demonstrating a lack of specificity that rivals or even surpasses that of arbuscular mycorrhizae. Indeed, these traits thus far appear to characterize a majority of strains belonging to the so-called “clade B” within the Sebacinales (recently re-classified as the Serendipitaceae), raising numerous basic research questions regarding plant–microbe signaling and the evolution of mycorrhizal symbioses. Further, given their proven beneficial impact on plant growth and their apparent but cryptic ubiquity, sebacinoid fungi should be considered as a previously hidden, but amenable and effective microbial tool for enhancing plant productivity and stress tolerance.

Keywords

Sebacinavermifera Serendipitaceae Growth promotion 

Notes

Acknowledgments

Sebacina vermifera (MAFF-305830) used in this study was obtained from the National Institute of Agro-biological Sciences, Tsukuba, Ibaraki, Japan. We thank Jin Nakashima for assistance with confocal microscopy; Yingqing Guo and Takako Ishiga for research assistance, Myoung-Hwan Chi and Kaustav Bandyopadhyay for assistance with photography. The original research presented here was supported by the Bioenergy Science Center, a US Department of Energy Bioenergy Research Center, through the Office of Biological and Environmental Research in the DOE Office of Science.

Compliance with ethical standards

Conflict of interest

All the authors in this manuscript declare no conflict of interests inherent to this submission.

References

  1. Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272CrossRefGoogle Scholar
  2. Baldi A, Jain A, Gupta N, Srivastava AK, Bisaria VS (2008) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671–1677. doi: 10.1007/s10529-008-9736-z CrossRefGoogle Scholar
  3. Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243CrossRefGoogle Scholar
  4. Barazani O, von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144:1223–1232CrossRefGoogle Scholar
  5. Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: Begon M, Fitter AH, Macfadyen A (eds) Advances in ecological research, vol 21. Academic Press, New York, pp 171–313Google Scholar
  6. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19:292–305CrossRefGoogle Scholar
  7. DeMars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189Google Scholar
  8. Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A (2011) Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol 51:33–39. doi: 10.1002/jobm.201000214 CrossRefGoogle Scholar
  9. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRefGoogle Scholar
  10. Franken P (2012) The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Appl Microbiol Biotechnol 96:1455–1464CrossRefGoogle Scholar
  11. García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386CrossRefGoogle Scholar
  12. Ghahfarokhi R, Goltapeh M (2010) Potential of the root endophytic fungus Piriformospora indica; Sebacina vermifera and Trichoderma species in biocontrol of take-all disease of wheat Gaeumannomyces graminis var. tritici in vitro. J Agric Tech 6:11–18Google Scholar
  13. Ghimire SR, Craven KD (2011) Enhancement of switchgrass (Panicum virgatum L.) biomass production under drought conditions by the ectomycorrhizal fungus Sebacina vermifera. Appl Environ Microbiol 77:7063–7067. doi: 10.1128/AEM.05225-11 CrossRefGoogle Scholar
  14. Ghimire SR, Charlton ND, Craven KD (2009) The mycorrhizal fungus, Sebacina vermifera, enhances seed germination and biomass production in switchgrass (Panicum virgatum L.). BioEnergy Res 2:51–58CrossRefGoogle Scholar
  15. Giltrap NJ, Lewis DH (1981) Inhibition of growth of ectomycorrhizal fungi in culture by phosphate. New Phytol 87:669–675Google Scholar
  16. Glen M, Tommerup I, Bougher N, O’Brien P (2002) Are Sebacinaceae common and widespread ectomycorrhizal associates of Eucalyptus species in Australian forests? Mycorrhiza 12:243–247CrossRefGoogle Scholar
  17. Harley J, Smith S (1983) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  18. Heijnen C, Hok-A-Hin C, Van Veen J (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538CrossRefGoogle Scholar
  19. Kottke I, Beiter A, Weiss M, Haug I, Oberwinkler F, Nebel M (2003) Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycol Res 107:957–968CrossRefGoogle Scholar
  20. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J. doi: 10.1100/2012/491206
  21. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163Google Scholar
  22. McKendrick S, Leake J, Taylor DL, Read D (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247CrossRefGoogle Scholar
  23. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535CrossRefGoogle Scholar
  24. Oberwinkler F (1964) Intrahymeniale Heterobasidiomyceten: fruchtkörpelose Sebacina-Sippen und ihre systematische StellungGoogle Scholar
  25. Oberwinkler F, Riess K, Bauer R, Selosse M-A, Weiß M, Garnica S, Zuccaro A (2013) Enigmatic sebacinales. Mycol Prog 12:1–27CrossRefGoogle Scholar
  26. Oberwinkler F, Riess K, Bauer R, Garnica S (2014) Morphology and molecules: the Sebacinales, a case study. Mycol Prog 13:445–470CrossRefGoogle Scholar
  27. Pirdashti H, Yaghoubian Y, Goltapeh E, Hosseini S (2012) Effect of mycorrhiza-like endophyte (Sebacina vermifera) on growth, yield and nutrition of rice (Oryza sativa L.) under salt stress. J Agric Technol 8:1651–1661Google Scholar
  28. Ray P, Guo Y, Chi M-H, Craven KD (2015a) Development & field trial of a novel delivery system for Sebacina vermifera in winter wheat. In: Oral presentation. The eighth international conference on Mycorrhizae (ICOM 8), Flagstaff, Arizona, 3–7 August 2015Google Scholar
  29. Ray P, Ishiga T, Decker SR, Turner GB, Craven KD (2015b) A novel delivery system for the root symbiotic fungus, Sebacina vermifera, and consequent biomass enhancement of low lignin COMT switchgrass lines. BioEnergy Res 8:922–933CrossRefGoogle Scholar
  30. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci 105:464–469CrossRefGoogle Scholar
  31. Seidel V et al (2002) Biosynthesis of podophyllotoxin in Linum album cell cultures. Planta 215:1031–1039. doi: 10.1007/s00425-002-0834-1 CrossRefGoogle Scholar
  32. Selosse MA, Bauer R, Moyersoen B (2002a) Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytol 155:183–195CrossRefGoogle Scholar
  33. Selosse MA, WEIß M, Jany JL, Tillier A (2002b) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) LCM Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844CrossRefGoogle Scholar
  34. Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426CrossRefGoogle Scholar
  35. Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174:864–878CrossRefGoogle Scholar
  36. Smith SRD (1997) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  37. Tao G, Liu Z, Hyde K, Lui X, Yu Z (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122Google Scholar
  38. Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179CrossRefGoogle Scholar
  39. Urban A, WEIß M, Bauer R (2003) Ectomycorrhizas involving sebacinoid mycobionts. Mycol Res 107:3–14CrossRefGoogle Scholar
  40. Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131CrossRefGoogle Scholar
  41. Varma A, Kost G, Oelmüller R (eds) (2013) Piriformospora indica: Sebacinales and their biotechnological applications, vol 33. Springer, BerlinGoogle Scholar
  42. Verma S et al (1998) Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903CrossRefGoogle Scholar
  43. Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel K-H (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70CrossRefGoogle Scholar
  44. Warcup J (1988) Mycorrhizal associations of isolates of Sebacina vermifera. New Phytol 110:227–231CrossRefGoogle Scholar
  45. Weiss M, Selosse M-A, Rexer K-H, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010CrossRefGoogle Scholar
  46. Weiss M et al (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6:e16793. doi: 10.1371/journal.pone.0016793 CrossRefGoogle Scholar
  47. Wells K, Oberwinkler F (1982) Tremelloscypha gelatinosa, a species of a new family Sebacinaceae. Mycologia 74:325–331Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations