Advertisement

World Journal of Microbiology and Biotechnology

, Volume 31, Issue 12, pp 1935–1946 | Cite as

Antimicrobial resistance and virulence factor gene profiles of Enterococcus spp. isolates from wild Arctocephalus australis (South American fur seal) and Arctocephalus tropicalis (Subantarctic fur seal)

  • Naiara Aguiar Santestevan
  • Dejoara de Angelis Zvoboda
  • Janira Prichula
  • Rebeca Inhoque Pereira
  • Guilherme Raffo Wachholz
  • Leonardo Almansa Cardoso
  • Tiane Martin de Moura
  • Aline Weber Medeiros
  • Derek Blaese de Amorin
  • Maurício Tavares
  • Pedro Alves d’Azevedo
  • Ana Claudia Franco
  • Jeverson Frazzon
  • Ana Paula Guedes FrazzonEmail author
Original Paper

Abstract

Enterococci are natural inhabitants of the gastrointestinal tracts in humans and animals. Epidemiological data suggest that enterococci are important reservoirs of antimicrobial resistant genes that may be transmitted from other bacterial species The aim of this study was to investigate the species composition, antimicrobial resistance and virulence genes in enterococci recovered from fecal samples of wild Arctocephalus australis and A. tropicalis found dead along the South Coast of Brazil. From a total of 43 wild fur seals, eleven were selected for this study. Phenotypic and genotypic characterizations were used to classify Enterococcus species. Strains were tested for susceptibility to 10 antibiotics, presence of ace, gelE, asa, cylA, tet(L), tet(M) and erm(B) genes by PCR, and genetic variability using RAPD-PCR. Among the 50 enterococci isolated, 40 % were Enterococcus faecalis, 40 % E. hirae, 12 % E. casseliflavus and 8 % other enterococcal species. Resistance profiles were observed to erythromycin, nitrofurantoin, tetracycline, norfloxacin and ciprofloxacin. The prevalence of virulence genes was ace (68 %), gelE (54 %), asa (22 %) and cylA (4 %). In erythromycin- and tetracycline strains, erm(B) and tet(M) were detected, respectively. The RAPD-PCR demonstrated a close phylogenetic relationship between the enterococci isolated from A. australis and A. tropicalis. In conclusion, different enterococcus species showing antimicrobial resistance and virulence determinates were isolated from fecal samples of fur seals. Antibiotic resistant strains in these animals could be related within food chain and aquatic pollutants or linked to environmental resistome, and demonstrates the potential importance of these animals as reservoirs and disseminators of such determinants in marine environmental.

Keywords

Wild fur seals Enterococci species Antimicrobial susceptibility Virulence genes 

Notes

Acknowledgments

We thank the government agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil (CNPq—#444335/2014-5, #300912/2012-9, #302421/2012-2 and #303251/2014-0) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) of the Brazilian government. We are grateful to Grupo de Estudos de Mamíferos Aquáticos do Rio Grande do Sul and all staff from Center for Coastal Studies, Limnology and Marine (Ceclimar) da Universidade Federal do Rio Grande do Sul by help in the data collection.

References

  1. Aarestrup FM, Agerso Y, Gerner-Smidt P et al (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37(2):127–137. doi: 10.1016/S0732-8893(00)00130-9 CrossRefGoogle Scholar
  2. Al-Badah AS, Ibrahim ASS, Al-Salamah AA, Ibrahim SSS (2015) Clonal diversity and antimicrobial resistance of Enterococcus faecalis isolated from endodontic infections. Electron J Biotechnol 18:175–180. doi: 10.1016/j.ejbt.2015.03.004 CrossRefGoogle Scholar
  3. American Society of Mammalogists (ASM) (1967) Standard measurements of seal. J Mammal 48:459–462. doi: 10.2307/1377778 CrossRefGoogle Scholar
  4. Banerjee T (2013) Random amplified polymorphic DNA (RAPD) typing of multidrug resistant Enterococcus faecium urinary isolates from a tertiary care centre, Northern India. J Clin Diagn Res 7(12):2721–2723. doi: 10.7860/JCDR/2013/6541.3742 Google Scholar
  5. Bennani M, Amarouch H, Oubrim N et al (2012) Identification and antimicrobial resistance of fecal enterococci isolated in coastal mediterranean environments of morocco. Eur J Sci Res 70(2):266–275Google Scholar
  6. Bogomolni AL, Gast RJ, Ellis JC et al (2008) Victims or vectors: a survey of marine vertebrate zoonoses from coastal waters of the Northwest Atlantic. Dis Aquat Org 81:13–38. doi: 10.3354/dao01936 CrossRefGoogle Scholar
  7. Borzone CA, Pezzuto PR, Marone E (1999) Oceanographic characteristics of a multi-specific fishing ground of the Central South Brazil Bight. Mar Ecol 20:131–146CrossRefGoogle Scholar
  8. Campagna C (IUCN SSC Pinniped Specialist Group) (2008) Arctocephalus australis. The IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org/details/2055/0. Accessed 25 Nov 2014
  9. Cassenego APV, D’Azevedo PA, Ribeiro AML et al (2011) Species distribution and antimicrobial susceptibility of enterococci isolated from broilers infected experimentally with Eimeria spp. and fed with diets containing different supplements. Braz J Microbiol 42(2):480–488. doi: 10.1590/S1517-83822011000200012 CrossRefGoogle Scholar
  10. Cheng S, McCleskey FK, Gress MJ et al (1997) A PCR assay for identification of Enterococcus faecium. J Clin Microbiol 35(5):1248–1250Google Scholar
  11. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. doi: 10.1128/mmbr.65.2.232-260.2001 CrossRefGoogle Scholar
  12. Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing: twenty-third informational supplement. M100-S23. Wayne, USAGoogle Scholar
  13. Dailey MD, Haulena M, Lawrence J (2002) First report of a parasitic copepod (Pennella balaenopterae) infestation in a pinniped. J Zoo Wildl Med 33(1):62–65CrossRefGoogle Scholar
  14. d’Azevedo PA, Dias CAG, Teixeira LM (2006) Genetic diversity and antimicrobial resistance of enterococcal isolates from Southern region of Brazil. Rev Inst Med Trop S Paulo 48(1):11–16. doi: 10.1590/S0036-46652006000100003 CrossRefGoogle Scholar
  15. Depardieu F, Perichon B, Courvalin P (2004) Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J Clin Microbiol 42(12):5857–5860. doi: 10.1128/JCM.42.12.5857-5860.2004 CrossRefGoogle Scholar
  16. Drehmer CJ, Ferigolo J (1997) Osteologia craniana comparada entre Arctocephalus australis e A. tropicalis (Pinnipedia, Otariidae). Iheringia Série Zoologia 83:137–149Google Scholar
  17. Dunny GM, Craig RA, Carron RL, Clewell DB (1979) Plasmid transfer in Streptococcus faecalis: production of multiple sex pheromones by recipients. Plasmid 2:454–465CrossRefGoogle Scholar
  18. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical samples. Appl Environ Microbiol 67(4):1628–1635. doi: 10.1128/AEM.67.4.1628-1635.2001 CrossRefGoogle Scholar
  19. Everitt BS (1992) The analysis of contingency tables (monographs on statistics and applied probability 45) 2nd edn. Chapman & Hall, pp 164, DM 75Google Scholar
  20. Facklam RR, Carvalho MGS, Teixeira LM (2002) History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. In: Gilmore, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (eds) The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch1 Google Scholar
  21. Franz C, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151(2):125–140. doi: 10.1016/j.ijfoodmicro.2011.08.014 CrossRefGoogle Scholar
  22. Frazzon APG, Gama BA, Hermes V et al (2010) Prevalence of antimicrobial resistance and molecular characterization of tetracycline resistance mediated by tet(M) and tet(L) genes in Enterococcus spp. isolated from food in Southern Brazil. World J Microbiol Biotechnol 26:365–370. doi: 10.1007/s11274-009-0160-x CrossRefGoogle Scholar
  23. Geraci JR, Lounsbury VJ (2005) Marine mammals ashore: a field guide for strandings, 2nd edn. National Aquarium in Baltimore, Baltimore, pp 177–188Google Scholar
  24. Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73(10):3272–3282. doi: 10.1128/AEM.02811-06 CrossRefGoogle Scholar
  25. Hofmeyr G (2014) Arctocephalus gazella. The IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org/details/2058/0. Accessed 06 March 2015
  26. Hofmeyr G, Kovacs K (IUCN SSC Pinniped Specialist Group) (2008) Arctocephalus tropicalis. The IUCN Red List of Threatened Species. Version 2014.3. http://www.iucnredlist.org/details/2062/0. Accessed 25 Nov 2014
  27. Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3(5):421–433. doi: 10.4161/viru.21282 CrossRefGoogle Scholar
  28. Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli minisatellite probe from bacteriophage M13. J Bact 171(5):2528–2532Google Scholar
  29. Jackson CR, Fedorka-Cray PJ, Barrett JB (2004) Use of a genus- and species-specific multiplex PCR for identification of Enterococci. J Clin Microbiol 42(8):3558–3565. doi: 10.1128/JCM.42.8.3558-3565.2004 CrossRefGoogle Scholar
  30. Jackson CR, Fedorka-Cray PJ, Davis JA, Barrett JB, Frye JG (2009) Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. J Appl Microbiol 107(4):1269–1278. doi: 10.1111/j.1365-2672.2009.04310.x CrossRefGoogle Scholar
  31. Jett BD, Huycke MM, Gilmore MS (1994) Virulence of Enterococci. Clin Microbiol Rev 7(4):462–478Google Scholar
  32. Johnson SP, Nolan S, Gulland FM (1998) Antimicrobial susceptibility of bacteria isolated from pinnipeds stranded in central and northern California. J Zoo Wildl Med 29(3):288–294Google Scholar
  33. Katz H, Morgades D, Castro-Ramos M (2012) Pathological and parasitological findings in South American fur seal pups (Arctocephalus australis) in Uruguay. ISRN Zool 2012:1–7. doi: 10.5402/2012/586079 CrossRefGoogle Scholar
  34. Ke D, Picard FJ, Martineau F et al (1999) Development of a PCR assay for rapid detection of Enterococci. J Clin Microbiol 37(11):3497–3503Google Scholar
  35. Klein G (2003) Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88(2–3):123–131. doi: 10.1016/S0168-1605(03)00175-2 CrossRefGoogle Scholar
  36. Koch S, Hufnagel M, Theilacker C, Huebner J (2004) Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22(7):822–830. doi: 10.1016/j.vaccine.2003.11.027 CrossRefGoogle Scholar
  37. Layton BA, Walters SP, Lam LH, Boehm A (2010) Enterococcus species distribution among human and animal hosts using multiplex PCR. J Appl Microbiol 109(2):539–547. doi: 10.1111/j.1365-2672.2010.04675.x Google Scholar
  38. Lebreton F, Willems RJL, Gilmore MS (2014) Enterococcus diversity, origins in nature and gut colonization. In: Gilmore MS, Clewell DB, Ike Y, Shankar N (ed) Enterococci: from commensals to leading causes of drug resistant infection (internet). boston: Massachusetts eye and ear infirmary. http://www.ncbi.nlm.nih.gov/books/NBK190427/
  39. Lisle JT, Smith JJ, Edwards DD, McFeters GA (2004) Occurrence of microbial indicators and Clostridium perfringens in wastewater, water column samples, sediments, drinking water, and weddell seal feces collected at McMurdo Station, Antarctica. Appl Environ Microbiol 70(12):7269–7276. doi: 10.1128/AEM.70.12.7269-7276.2004 CrossRefGoogle Scholar
  40. Lockwood SK, Chovan JL, Gaydos JK (2006) Aerobic bacterial isolations from harbor seals (Phoca vitulina) stranded in Washington: 1992–2003. J Zoo Wildl Med 37(3):281–291. doi: 10.1638/05-035.1 CrossRefGoogle Scholar
  41. Mannu L, Paba A, Daga E et al (2003) Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol 88(2–3):291–304. doi: 10.1016/S0168-1605(03)00191-0 CrossRefGoogle Scholar
  42. Marinho C, Silva N, Pombo S et al (2013) Echinoderms from Azores islands: an unexpected source of antibiotic resistant Enterococcus spp. and Escherichia coli isolates. Mar Pollut Bull 69(1–2):122–127. doi: 10.1016/j.marpolbul.2013.01.017 CrossRefGoogle Scholar
  43. Martín B, Corominas L, Garriga M, Aymerich T (2009) Identification and tracing of Enterococcus spp. by RAPD-PCR in traditional fermented sausages and meat environment. J Appl Microbiol 106:66–77. doi: 10.1111/j.1365-2672.2008.03976.x CrossRefGoogle Scholar
  44. Medeiros AW, Pereira RI, Martins PD et al (2014) Molecular detection of virulence factors among food and clinical Enterococcus faecalis strains in South Brazil. Braz J Microbiol 45(1):327–332. doi: 10.1590/S1517-83822014005000031 CrossRefGoogle Scholar
  45. Mohamed JA, Huang DB (2007) Biofilm formation by enterococci. J Med Microbiol 56(12):1581–1588. doi: 10.1099/jmm.0.47331-0 CrossRefGoogle Scholar
  46. Muehe D (2001) O litoral brasileiro e sua compartimentação. In: Cunha SB, Guerra AJT (eds) Geomorfologia do Brasil, 2nd edn. Editora Bertrand Brasil, Rio de Janeiro, pp 273–349Google Scholar
  47. Mundy LM, Sahm DF, Gilmore MS (2000) Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13(4):513–522CrossRefGoogle Scholar
  48. Nachtigall G, Jesus AG, Zvoboda DA, Santestevan NA, Minotto E, Moura TM, d’Azevedo P, Frazzon J, Van Der Sand S, Frazzon APG (2013) Diversidade e perfil de susceptibilidade antimicrobiana de Enterococcus sp. isolados das águas do Arroio Dilúvio—Porto Alegre, RS, Brasil. R Bras Bioci 11(2):235–241. http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/2490
  49. Nallapareddy SR, Qin X, Weinstock GM, Höök M, Murray BE (2000) Enterococcus faecalis adhesin, Ace, mediates attachment to extracellular matrix proteins collagen Type IV and laminin as well as collagen type I. Infect Immun 68(9):5218–5224CrossRefGoogle Scholar
  50. Petersen A, Dalsgaard A (2003) Species composition and antimicrobial resistance genes of Enterococcus spp. isolated from integrated and traditional fish farms in Thailand. Environ Microbiol 5(5):395–402. doi: 10.1046/j.1462-2920.2003.00430.x CrossRefGoogle Scholar
  51. Pinedo MC, Rosas FC, Marmontel M (1992) Cetáceos e pinípedes do Brasil: uma revisão dos registros e guia para identificação das espécies. UNEP/FUA, Manaus, pp 158–166Google Scholar
  52. Poeta P, Costa D, Sáenz Y et al (2005) Characterization of antibiotic resistance genes and virulence factors in faecal enterococci of wild animals in Portugal. J Vet Med B Infect Dis Vet Public Health 52(9):396–402. doi: 10.1111/j.1439-0450.2005.00881.x CrossRefGoogle Scholar
  53. Poeta P, Costa D, Igrejas J et al (2007) Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Vet Microbiol 125:368–374. doi: 10.1016/j.vetmic.2007.06.003 CrossRefGoogle Scholar
  54. Prichula J, Zvoboda DA, Pereira RI, Santestevan NA, Medeiros AW, Motta AS, D´Azevedo PA, Giordani AR, Frazzon APG (2013) Perfil de suscetibilidade aos antimicrobianos e diversidade das espécies de enterococos isolados de leite cru de búfalas no Sul do Brasil. R Bras Ci Vet 20(2):104–109Google Scholar
  55. Riboldi GP, de Mattos EP, Frazzon APG et al (2008) Phenotypic and genotypic heterogeneity of Enterococcus species isolated from food in Southern Brazil. J Basic Microbiol 48:31–37. doi: 10.1002/jobm.200700226 CrossRefGoogle Scholar
  56. Riboldi GP, Frazzon J, Azevdo PA et al (2009) Antimicrobial resistance profile of Enterococcus spp. isolated from food in southern Brazil. Braz J Microbiol 40(1):125–128. doi: 10.1590/S1517-83822009000100021 CrossRefGoogle Scholar
  57. Rose JM, Gast RJ, Bogomolni A et al (2009) Occurrence and patterns of antibiotic resistance in vertebrates off the Northeastern United States coast. FEMS Microbiol Ecol 67(3):421–431. doi: 10.1111/j.1574-6941.2009.00648.x CrossRefGoogle Scholar
  58. Seeliger U (1997) Sea grass meadows. In: Seeliger U, Odebrecht C, Castello JP (eds) Subtropical convergence environments: the coast and sea in the southwestern Atlantic. Springer, Berlin, pp 82–85CrossRefGoogle Scholar
  59. Semedo T, Santos MA, Lopes MF et al (2003) Virulence factors in food, clinical and reference enterococci: A common trait in the genus? Syst Appl Microbiol 26(1):13–22. doi: 10.1078/072320203322337263 CrossRefGoogle Scholar
  60. Stewart JR, Townsend FI, Lane SM et al (2014) Survey of antibiotic-resistant bacteria isolated from bottlenose dolphins Tursiops truncates in the southeastern USA. Dis Aquat Org 108(2):91–102. doi: 10.3354/dao02705 CrossRefGoogle Scholar
  61. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L (1996) Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40(11):2562–2566Google Scholar
  62. Teixeira LM, Carvalho MG, Shewmaker PL, Facklam RR (2011) Enterococcus. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) Manual of clinical microbiology, 10th edn. ASM Press, Washington, DC, pp 350–364CrossRefGoogle Scholar
  63. Thornton SM, Nolan S, Gulland FM (1998) Bacterial isolates from California sea lions (Zalophus californianus), harbor seals (Phoca vitulina), and northern elephant seals (Mirounga angustirostris) admitted to a rehabilitation center along the central California coast, 1994–1995. J Zoo Wildl Med 29(2):171–176. http://www.jstor.org/stable/20095741
  64. Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186. doi: 10.1038/nrmicro1614 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Naiara Aguiar Santestevan
    • 1
  • Dejoara de Angelis Zvoboda
    • 1
  • Janira Prichula
    • 2
  • Rebeca Inhoque Pereira
    • 2
  • Guilherme Raffo Wachholz
    • 2
  • Leonardo Almansa Cardoso
    • 1
  • Tiane Martin de Moura
    • 2
  • Aline Weber Medeiros
    • 1
  • Derek Blaese de Amorin
    • 3
  • Maurício Tavares
    • 3
  • Pedro Alves d’Azevedo
    • 2
  • Ana Claudia Franco
    • 1
  • Jeverson Frazzon
    • 4
  • Ana Paula Guedes Frazzon
    • 1
    Email author
  1. 1.Microbiology, Immunology and Parasitology DepartmentFederal University of Rio Grande do SulPorto AlegreBrazil
  2. 2.Gram Positive Coccus LaboratoryFederal University of Health Sciences Porto AlegrePorto AlegreBrazil
  3. 3.Center for Coastal Studies, Limnology and Marine (Ceclimar)Federal University of Rio Grande do SulImbéBrazil
  4. 4.Department of Food ScienceFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations