World Journal of Microbiology and Biotechnology

, Volume 31, Issue 11, pp 1665–1673 | Cite as

Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest

  • Ilaria MannazzuEmail author
  • Sara Landolfo
  • Teresa Lopes da Silva
  • Pietro Buzzini


Carotenoids are one of the most common classes of pigments that occur in nature. Due to their biological properties, they are widely used in phytomedicine and in the chemical, pharmaceutical, cosmetic, food and feed industries. Accordingly, their global market is continuously growing, and it is expected to reach about US$1.4 billion in 2018. Carotenoids can be easily produced by chemical synthesis, although their biotechnological production is rapidly becoming an appealing alternative to the chemical route, partly due to consumer concerns against synthetic pigments. Among the yeasts, and apart from the pigmented species Phaffia rhodozyma (and its teleomorph Xanthophyllomyces dendrorhous), a handful of species of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus are well known carotenoid producers. These are known as ‘red yeasts’, and their ability to synthesize mixtures of carotenoids from low-cost carbon sources has been broadly studied recently. Here, in agreement with the renewed interest in microbial carotenoids, the recent literature is reviewed regarding the taxonomy of the genera Rhodosporidium, Rhodotorula, Sporobolomyces and Sporidiobolus, the stress factors that influence their carotenogenesis, and the most advanced analytical tools for evaluation of carotenoid production. Moreover, a synopsis of the molecular and “-omic” tools available for elucidation of the metabolic pathways of the microbial carotenoids is reported.


Basidiomycetous yeast Carotenoid analysis Flow cytometry -omic tools Transformation 



This study was partially supported by Regione Autonoma della Sardegna (LR7/07-2010; grant to I.M. and fellowship to S.L.). The authors are grateful to Benedetta Turchetti for valuable help in drawing the phylogenetic tree of red yeasts.


  1. Abbott EP, Ianiri G, Castoria R, Idnurm A (2013) Overcoming recalcitrant transformation and gene manipulation in Pucciniomycotina yeasts. Appl Microbiol Biotechnol 97:283–295CrossRefGoogle Scholar
  2. Aksu Z, Eren AT (2005) Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as carbon source. Process Biochem 40:2985–2991. doi: 10.1016/j.procbio.2005.01.011 CrossRefGoogle Scholar
  3. Amorim-Carrilho KT, Cepeda A, Fente C, Regal P (2014) Review of methods for analysis of carotenoids. TrAC Trends Anal Chem 56:49–73CrossRefGoogle Scholar
  4. BCC Research (2011) The global market for carotenoids. Published Sept 2011
  5. Bhosale P (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl Microbiol Biotechnol 63:351–361CrossRefGoogle Scholar
  6. Bhosale PB, Gadre RV (2001a) Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol 55(4):423–427CrossRefGoogle Scholar
  7. Bhosale PB, Gadre RV (2001b) β-Carotene production in sugar cane molasses by a Rhodotorula glutinis mutant. J Ind Microbiol Biotechnol 26(6):327–332CrossRefGoogle Scholar
  8. Boekhout T (2011) Bulleromyces Boekhout & Fonseca (1991). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1391–1394CrossRefGoogle Scholar
  9. Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni UM, Davoli P (2005) Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme Microb Technol 36(5–6):687–692CrossRefGoogle Scholar
  10. Buzzini P, Innocenti M, Turchetti B, Libkind D, van Broock M, Mulinacci N (2007) Carotenoid profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus. Can J Microbiol 53:1024–1031CrossRefGoogle Scholar
  11. Buzzini P, Goretti M, Branda E, Turchetti B (2010) Basidiomycetous yeasts for production of carotenoids. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 1. Wiley, New York, pp 469–481Google Scholar
  12. Cutzu R, Clemente A, Nobre B, Mannazzu I, Roseiro J, Lopes da Silva T (2013a) Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry. J Ind Microbiol Biotechnol 40:865–875CrossRefGoogle Scholar
  13. Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, Mannazzu I (2013b) From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 29(6):1009–1017CrossRefGoogle Scholar
  14. Davoli P, Mierau V, Weber RWS (2004) Carotenoids and fatty acids in red yeast Sporobolomyces roseus and Rhodotorula glutinis. Appl Biochem Microbiol 40(4):392–397CrossRefGoogle Scholar
  15. Debarati P, Magbanua Z, Arick M II, French T, Bridges SM, Burgess SC, Lawrence ML (2014) Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091. Genome Announc 2(1):e00046-14. doi: 10.1128/genomeA.00046-14 CrossRefGoogle Scholar
  16. Deligios M, Fraumene C, Abbondio M, Mannazzu I, Tanca A, Addis MF, Uzzau S (2015) Draft genome sequence of Rhodotorula mucilaginosa, an emergent opportunistic pathogen. Genome Announc 3(2):e00201–e00215. doi: 10.1128/genomeA.00201-15 CrossRefGoogle Scholar
  17. Dufossé L (2006) Food grade pigments. Food Technol Biotech 44(3):313–321Google Scholar
  18. Fell JW, Johnson EA (2011) Phaffia M.W. Miller, Yoneyama & Soneda (1976). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1853–1856CrossRefGoogle Scholar
  19. Fell JW, Johnson EA, Scorzetti G (2011) Xanthophyllomyces Golubev (1995). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1595–1601CrossRefGoogle Scholar
  20. Ferrao M, Garg S (2012) Shake flask optimization of & β-carotene production in Rhodotorula graminis RC04. Afr J Biotechnol 11(52):11431–11437Google Scholar
  21. Freitas C, Nobre B, Gouveia L, Roseiro J, Reis A, Lopes da Silva T (2014) New at-line flow cytometric protocols for determining carotenoid content and cell viability during Rhodosporidium toruloides NCYC 921 batch growth. Proc Biochem 49:554–562CrossRefGoogle Scholar
  22. Guo W, Tang H, Zhang L (2014) Lycopene cyclase and phytoene synthase activities in the marine yeast Rhodosporidium diobovatum are encoded by a single gene crtYB. J Basic Microbiol 54:1053–1061CrossRefGoogle Scholar
  23. Guo W, Liu Y, Yan X, Liu M, Tang H, Liu Z, Zhang L (2015) Cloning and characterization of a phytoene dehydrogenase gene from marine yeast Rhodosporidium diobovatum. DOI, A van Leeuw J Microb. doi: 10.1007/s10482-015-0394-6 Google Scholar
  24. Hamamoto M, Boekhout T, Nakase T (2011) Sporobolomyces Kluyver & van Niel (1924). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1929–1990CrossRefGoogle Scholar
  25. Hernandez-Almanza A, Montanez JC, Aguilar-Gonzalez MA, Martinez-Avila C, Rodriguez-Herrera R, Aguilar CN (2014) Rhodotorula glutinis as source of pigments and metabolites for food industries. Food Biosci 5:64–72CrossRefGoogle Scholar
  26. Herrero M, Cacciola F, Donato P, Giuffrida D, Dugo G, Dugo P, Mondello L (2008) Serial coupled columns reversed-phase separations in high-performance liquid chromatography: tool for analysis of complex real samples. J Chromatogr 1188:208–215CrossRefGoogle Scholar
  27. Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effect of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847CrossRefGoogle Scholar
  28. Ianiri G, Wright SAI, Castoria R, Idnurm A (2011) Development of resources for the analysis of gene function in Pucciniomycotina red yeasts. Fungal Genet Biol 48:685–695CrossRefGoogle Scholar
  29. Irazusta V, Estévez C, Amoroso MJ, de Figueroa LJ (2012) Proteomic study of the yeast Rhodotorula mucilaginosa RCL-11 under copper stress. Biometals 25:517–527CrossRefGoogle Scholar
  30. Irazusta V, Nieto-Penalver CG, Cabral ME, Amoroso MJ, de Figueroa LIC (2013) Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochem 48:803–809CrossRefGoogle Scholar
  31. Johnson EA (2013) Biotechnology of non-Saccharomyces yeasts—the basidiomycetes. Appl Microbiol Biotechnol 97:7563–7577CrossRefGoogle Scholar
  32. Johnson EA, Echavarri-Erasun C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomy study, vol 1. Elsevier, New York, pp 21–44CrossRefGoogle Scholar
  33. Johnson EA, Schroeder WA (1995) Microbial carotenoids. In: Fiechter A (ed) Adv Biochem Eng Biotechnol 53:119–178Google Scholar
  34. Kaiser P, Surmann P, Vallentin G, Fuhmann H (2007) A small-scale method for quantitation of carotenoids in bacteria and yeasts. J Microbiol Method 70:142–149CrossRefGoogle Scholar
  35. Kirti K, Amita S, Priti S, Kumar AM, Jyoti S (2014) Colorful world of microbes: carotenoids and their applications. Adv Biol ID837891Google Scholar
  36. Koh CMJ, Liu Y, Moehninsi MD, Ji L (2014) Molecular characterization of KU70 and KU80 homologues and exploitation of a KU70-deficient mutant for improving gene deletion frequency in Rhodosporiudium toruloides. BMC Microbiol 14:50CrossRefGoogle Scholar
  37. Kumar S, Kushwaha H, Bachhawat AK, Raghava GPS, Ganesan K (2012) Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryot Cell 11(8):1083–1084CrossRefGoogle Scholar
  38. Li Z, Sun H, Mo X, Li X, Xu B, Tian P (2013) Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol 97:4927–4936CrossRefGoogle Scholar
  39. Lin X, Wang Y, Zhang S, Zhu Z, Zhou YJ, Yang F, Sun W, Wang X, Zhao ZK (2014) Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides. Yeast 14:547–555CrossRefGoogle Scholar
  40. Liu H, Zhao X, Wang F, Li F, Li Y, Jiang X, Ye M, Zhao ZK, Zou H (2009) Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast 26:553–566CrossRefGoogle Scholar
  41. Liu Y, Chong Mei JK, Longhua S, Mya Myintzu H, Minge Du, Ni P, Lianghui J (2013) Characterization of glyceraldehyde-3-phosphate dehydrogenase gene RtGPD1 and development of genetic transformation method by dominant selection in oleaginous yeast Rhodosporidium toruloides. Appl Microbiol Biotechnol 97:719–729CrossRefGoogle Scholar
  42. Mahmoud AGY, Abo-Shady MA, El-Sheekh MM, Hamza TW (2014) The role of some stress factors including hydrogen peroxide, methylen blue, sodium chloride and ultraviolet on Rhodotorula glutinis DBVPG# 4400 total carotenoids production. Int J Biosci (IJB) 4(9):10–19Google Scholar
  43. Maldonade IR, Rodriguez-Amaya DB, Scamparini ARP (2008) Carotenoids of yeasts isolated from Brazilian ecosystem. Food Chem 107(1):145–150CrossRefGoogle Scholar
  44. Malisorn C, Suntornsuk W (2008) Optimization of & β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour Technol 99:2281–2287CrossRefGoogle Scholar
  45. Marcoleta A, Niklitschek M, Wozniak A, Lozano C, Alcaíno J, Baeza M, Cifuentes V (2011) Glucose and ethanol-dependent transcriptional regulation of the astaxanthin biosynthesis pathway in Xanthophyllomyces dendrorhous. BMC Microbiol 11:190CrossRefGoogle Scholar
  46. Marova I, Breierova E, Koci R, Friedl Z, Slovak B, Pokorna J (2004) Influence of exogenous stress factors on production of carotenoids by some strains of carotenogenic yeasts. Ann Microbiol 54:73–85Google Scholar
  47. Marova I, Carnecka M, Halienova A, Koci R, Breierova E (2010) Production of carotenoid/ergosterol supplemeted biomass by red yeast Rhodotorula glutinis grown under external stress. Food Technol Biotech 48:56–61Google Scholar
  48. Marova I, Certik M, Breierova E (2011) Production of enriched biomass by carotenogenic yeasts—application of whole-cell yeast biomass to production of pigments and other lipid compounds, biomass—detection, production and usage. Darko Matovic (ed), ISBN:978-953-307-492-4Google Scholar
  49. Marova I, Carnecka M, Halienova A, Certik M, Dvorakova T, Haronikova A (2012) Use of several waste substrates for carotenoid-rich yeast biomass production. J Environ Manag 95:S338–S342CrossRefGoogle Scholar
  50. Martinez-Moya P, Niehaus K, Alcaíno J, Baeza M, Cifuentes V (2015) Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources. BMG Genomics 16:289CrossRefGoogle Scholar
  51. Mata-Gomez LC, Montañez JC, Méndez-Zavala Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12CrossRefGoogle Scholar
  52. Morin N, Calcas X, Devillers H, Durrens P, Sherman DJ, Nicaud J-M, Neuveglise C (2014) Draft genome of Rhodosporidium toruloides CECT1137, an oleaginous yeast of biotechnological interest. Genome Announc 2(4):e00641-14CrossRefGoogle Scholar
  53. Nishida H, Robert V, Sugiyama J (2011) Mixia C.L. Kramer emend. H. Nishida, K. Ando, Y. Ando, Hirata & Sugiyama (1995). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1499–1502CrossRefGoogle Scholar
  54. Nishijima M, Araki-Sakai M, Sano H (1997) Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122CrossRefGoogle Scholar
  55. Park PK, Kim EY, Chu KH (2007) Chemical disruption of yeast cells for the isolation of carotenoid pigments. Sep Purif Technol 53:148–152CrossRefGoogle Scholar
  56. Petrik S, Marova I, Haronikova A, Kostovova I, Breierova E (2013) Production of biomass, carotenoid and other lipid metabolites by several red yeasts strains cultivated on waste glycerol from biofuel production—a comparative screening study. Ann Microbiol 63:1537–1551CrossRefGoogle Scholar
  57. Provesi JG, Dias CO, Amante ER (2011) Changes in carotenoids during processing and storage of pumpkin puree. Food Chem 128:195–202CrossRefGoogle Scholar
  58. Rapta P, Polovka M, Zalibera M, Breierova E, Zitnanova I, Marova I, Certik M (2005) Scavenging andantioxidant properties of compounds synthesized by carotenogenic yeasts stressed by heavy metals—EPR spin trapping study. Biophys Chem 116:1–9CrossRefGoogle Scholar
  59. Razavi SH (2006) UV-HPLC/APCI/MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iran J Chem Chem Eng 25:1–10Google Scholar
  60. Rodríguez-Amaya D (2001) In: Rodríguez-Amaya D (ed) A guide to carotenoid analysis in foods. ILSI Press, Washington DCGoogle Scholar
  61. Sakaki H, Nakanishi T, Tada A, Miki W, Komemushi S (2001) Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng 92:294–297CrossRefGoogle Scholar
  62. Sampaio JP (2011a) Cystofilobasidium Oberwinkler & Bandoni (1983). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1423–1432CrossRefGoogle Scholar
  63. Sampaio JP (2011b) Rhodosporidium Banno (1967). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1523–1540CrossRefGoogle Scholar
  64. Sampaio JP (2011c) Rhodotorula Harrison (1928). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1873–1928CrossRefGoogle Scholar
  65. Sampaio JP (2011d) Sporidiobolus Nyland (1949). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1549–1562CrossRefGoogle Scholar
  66. Sampaio JP, Oberwinkler F (2011a) Cystobasidium (Lagerheim) Neuhoff (1924). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1419–1422CrossRefGoogle Scholar
  67. Sampaio JP, Oberwinkler F (2011b) Occultifur Oberwinkler (1990). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study. Elsevier, London, pp 1515–1518CrossRefGoogle Scholar
  68. Somashekar D, Joseph R (2000) Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of growth medium. World J Microbiol Biotechnol 16:491–493CrossRefGoogle Scholar
  69. Soroka IM, Narushin VG, Turiyansky YD, Tyurenkov AA (2012) Spectroscopy analysis for simultaneous determination of lycopene and β-carotene in fungal biomass of Blakeslea trispora. Acta Biochim Pol 59:65–69Google Scholar
  70. Squina FM, Mercadante AZ (2005) Influence of nicotine and dyphenylamine on the carotenoid composition of Rhodotorula strains. J Food Biochem 29(6):638–652CrossRefGoogle Scholar
  71. Takahashi S, Okada H, Abe K, Kera Y (2014) Genetic transformation of the yeast Rhodotorula gracilis ATCC 26217 by electroporation. Appl Biochem Microbiol 50(6):624–628CrossRefGoogle Scholar
  72. Tinoi T, Rakariyatham N, Deming RL (2005) Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Proc Biochem 40:2551–2557CrossRefGoogle Scholar
  73. Tully M, Gilbert HJ (1985) Transformation of Rhodosporidium toruloides. Gene 36(3):235–240CrossRefGoogle Scholar
  74. Ukibe K, Katsuragi T, Tani Y, Takagi H (2008) Efficient screening for astaxanthin-overproducing mutants of the yeast Xanthophyllomyces dendrorhous by flow cytometry. FEMS Microbiol Lett 286:241–248CrossRefGoogle Scholar
  75. Vachali P, Bhosale P, Bernstein PS (2012) Microbial carotenoids. In: Barredo J-L (ed) Microbial carotenoids from fungi: methods and protocols. Methods Mol Biol 898:41–59Google Scholar
  76. Verdoes JC, Krubasik KP, Sandman G, van Ooyen AJ (1999) Isolation and functional characterization of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262:453–461CrossRefGoogle Scholar
  77. Wang SL, Sun JS, Han BZ, Wu XZ (2008) Enhanced β-carotene production by Rhodotorula glutinis using high hydrostatic pressure. Korean J Chem Eng 25(3):513–516CrossRefGoogle Scholar
  78. Wang C, Wang CY, Zhao XQ, Chen RF, Lan P, Shen RF (2013) Proteomic analysis of a high aluminium tolerant yeast Rhodotorula taiwanensis RS1 in response to aluminium stress. Biochim Biophys Acta 1834:1969–1975CrossRefGoogle Scholar
  79. Yen HW, Zhang Z (2011) Enhancement of cell wall growth rate by light irradiation in the cultivation of Rhodotorula glutinis. Bioresour Technol 102:9279–9281CrossRefGoogle Scholar
  80. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112. doi: 10.1038/ncomms2112
  81. Zoz L, Carvalho JC, Soccol VT, Casagrande TC, Cardoso L (2015) Torularhodin and torulene: bioproduction, properties, and prospective applications in food and cosmetics—a review. Braz Arch Biol Technol 58(2):278–288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ilaria Mannazzu
    • 1
    Email author
  • Sara Landolfo
    • 1
  • Teresa Lopes da Silva
    • 2
  • Pietro Buzzini
    • 3
  1. 1.Dipartimento di AgrariaUniversità degli Studi di SassariSassariItaly
  2. 2.Unidade de BioenergiaLaboratorio Nacional de Energia e GeologiaLisbonPortugal
  3. 3.Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Collezione dei Lieviti Industriali (DBVPG)Università di PerugiaPerugiaItaly

Personalised recommendations