World Journal of Microbiology and Biotechnology

, Volume 31, Issue 10, pp 1629–1639 | Cite as

Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor

  • M. M. Vasanthakumari
  • S. S. Jadhav
  • Naik Sachin
  • G. Vinod
  • Singh Shweta
  • B. L. Manjunatha
  • P. Mohana Kumara
  • G. Ravikanth
  • Karaba N. Nataraja
  • R. Uma Shaanker
Original Paper

Abstract

Fungal endophytes inhabit living tissues of plants without any apparent symptoms and in many cases are known to produce secondary metabolites similar to those produced by their respective host plants. However on sub-culture, the endophytic fungi gradually attenuate their ability to produce the metabolites. Attenuation has been a major constraint in realizing the potential of endophytic fungi as an alternative source of plant secondary metabolites. In this study, we report attempts to restore camptothecine (CPT) production in attenuated endophytic fungi isolated from CPT producing plants, Nothapodytes nimmoniana and Miquelia dentata when they are passed through their host plant or plants that produce CPT and when treated with a DNA methyl transferase inhibitor. Attenuated endophytic fungi that traversed through their host tissue or plants capable of synthesizing CPT, produced significantly higher CPT compared to the attenuated fungi. Attenuated fungus cultured in the presence of 5-azacytidine, a DNA methyltransferase inhibitor, had an enhanced CPT content compared to untreated attenuated fungus. These results indicate that the attenuation of CPT production in endophytic fungi could in principle be reversed by eliciting some signals from plant tissue, most likely that which prevents the methylation or silencing of the genes responsible for CPT biosynthesis.

Keywords

Endophytic fungi Attenuation In vitro regeneration Nothapodytes nimmoniana Epigenetic modifiers GFP 

Supplementary material

11274_2015_1916_MOESM1_ESM.ppt (216 kb)
Supplementary material 1 (PPT 215 kb)

References

  1. Arx VJA (1981) The genera of fungi sporulating in pure culture. A. R. Gartner Verlag kommanditgesellschaft, FL-9490 Vaduz, GermanyGoogle Scholar
  2. Azevedo JL, Macchroni W, Pereira JO, Araujo WL (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Biotechnology 3:40–65Google Scholar
  3. Beau J, Mahid N, Burda WN, Harrington L, Shaw LN, Mutka T, Kyle DE, Barisic B, van Olphen Alberto, Baker BJ (2012) Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii. Marine Drugs 4:762–774CrossRefGoogle Scholar
  4. Berg G, Krechel A, Faltin F, Ulrich A, Hallmann J, Grosch R (2004) Endophytes: a new source for environmental biotechnology. In: Abstracts of 10th international symposium on microbial ecology ISME-10, “Microbial Planet: sub surface to space”, Cancun, Mexico, August 22–27Google Scholar
  5. Chen H-J, Awakawa T, Sun J-Y, Wakimoto T, Abe I (2013) Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L. Nat Prod Bioprospecting 3:20–23CrossRefGoogle Scholar
  6. Chujo T, Scott B (2014) Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Mol Microbiol 2:413–434CrossRefGoogle Scholar
  7. Devari S, Jaglan S, Kumar M, Deshidi R, Guru S, Bhushan S, Kushwaha M, Gupta AP, Gandhi SG, Sharma JP, Taneja SC, Vishwakarma RA, Shah BA (2014) Capsaicin production by Alternaria alternata, an endophytic fungus from Capsicum annum; LC–ESI–MS/MS analysis. Phytochemistry 98:183–189CrossRefGoogle Scholar
  8. Dhingra OD, Sinclair JB (1993) Basic plant pathology methods. CRC Press, Boca RatonGoogle Scholar
  9. El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH (2014) Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). J Nat Prod 77:193–199CrossRefGoogle Scholar
  10. Ezra D, Skovorodnikova J, Kroitorkeren T, Denisov Y, Liarzi O (2010) Development of methods for detection and Agrobacterium-mediated transformation of the sterile, endophytic fungus Muscodor albus. Biocontrol Sci Tech 20:83–97CrossRefGoogle Scholar
  11. Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213CrossRefGoogle Scholar
  12. Gurudatt PS, Priti V, Shweta S, Ramesha BT, Ravikanth G, Vasudeva R, Amna T, Deepika S, Ganeshaiah KN, Uma Shaanker R, Puri S, Qazi N (2010) Attenuation of camptothecin production and negative relation between hyphal biomass and camptothecin content in endophytic fungal strains isolated from Nothapodytes nimmoniana Grahm (Icacinaceae). Curr Sci 98:1006–1009Google Scholar
  13. Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438CrossRefGoogle Scholar
  14. Kumara PM, Soujanya KN, Ravikanth G, Vasudeva R, Ganeshaiah KN, Shaanker RU (2014) Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb). Wight & Arn. Phytomedicine 21:541–546CrossRefGoogle Scholar
  15. Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162CrossRefGoogle Scholar
  16. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7CrossRefGoogle Scholar
  17. Kusari S, Zuelke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775CrossRefGoogle Scholar
  18. Li J, Sidhu RS, Ford EJ, Long DM, Hess WM, Strobel GA (1998) The induction of taxol production in the endophytic fungus-Periconia sp. from Torreya grandifolia. J Ind Microbiol Biotechnol 20:259–264CrossRefGoogle Scholar
  19. Li JY, Strobel GA, Harper JK, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2:767–770CrossRefGoogle Scholar
  20. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2008) Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc 3:1671–1678CrossRefGoogle Scholar
  21. Mohana Kumara P, Zuehlke S, Priti V, Ramesha BT, Shweta S, Ravikanth G, Vasudeva R, Santhoshkumar TR, Spiteller M, Uma Shaanker R (2011) Fusarium proliferatum, an endophytic fungus from Dysoxylum binectariferum Hook.f, produces rohitukine, a chromane alkaloid possessing anti-cancer activity. Antonie Van Leeuwenhoek 101:323–329CrossRefGoogle Scholar
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  23. Murray FR, Latch GCM, Scott DB (1992) Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet 233:1–9CrossRefGoogle Scholar
  24. Priti V, Ramesha BT, Shweta S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, Uma Shaanker R (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites. Curr Sci 97:4–6Google Scholar
  25. Rahman MH, Saiga S (2005) Endophytic fungi (Neotyphodium coenophialum) affect the growth and mineral uptake, transport and efficiency ratios in tall fescue (Festuca arundinacea). Plant Soil 272:163–171CrossRefGoogle Scholar
  26. Ramesha BT, Amna T, Ravikanth G, Gunaga RP, Vasudeva R, Ganeshaiah KN, Uma Shaanker R, Khajuria RK, Puri SC, Qazi GN (2008) Prospecting for camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: identification of high yielding sources of camptothecin and new families of camptothecines. J Chromatogr Sci 46:362–368CrossRefGoogle Scholar
  27. Ramesha BT, Suma HK, Senthilkumar U, Priti V, Ravikanth G, Vasudeva R, Santhosh Kumar TR, Ganeshaiah KN, Uma Shaanker R (2013) New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicine 20:521–527CrossRefGoogle Scholar
  28. Sachin N, Manjunatha BL, Mohana Kumara P, Ravikanth G, Shweta S, Suryanarayanan TS, Ganeshaiah KN, Uma Shaanker R (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites? Curr Sci 104:178–182Google Scholar
  29. Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664CrossRefGoogle Scholar
  30. Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Shaanker RU (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122CrossRefGoogle Scholar
  31. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentata Bedd produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20:337–342CrossRefGoogle Scholar
  32. Stierle A, Strobel G (1995) The search of taxo roducing microorganism among the endophytic fungi of the pacific yew, Taxus brevifolia. J Nat Prod 58:1315–1324CrossRefGoogle Scholar
  33. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216CrossRefGoogle Scholar
  34. Strobel GA (2002) Rain forest endophytes and bioactive products. Crit Rev Biotechnol 22:325–333CrossRefGoogle Scholar
  35. Tafur S, Nelson JD, DeLong DC, Svoboda GH (1976) Antiviral components of Ophiorrhiza mungos. Isolation of camptothecin and 10-methoxycamptothecin. Lloydia 39:261–262Google Scholar
  36. Vainio EJ, Korhonen K, Hantula J (1998) Genetic variation in Phlebiopsis gigantea as detected with random amplified microsatellite (RAMS) markers. Mycol Res 102:187–192CrossRefGoogle Scholar
  37. Wang J, Li G, Lu H, Zheng Z, Huang Y, Su W (2000) Taxol from Tubercularia sp. strain TF5, and endophytic fungi of Taxus mairei. FEMS Microbiol Lett 193:249–253CrossRefGoogle Scholar
  38. Wang F, Xu M, Li Q, Sattler I, Lin W (2010) P-aminoacetophenonic acids produced by a mangrove endophyte Streptomyces sp. (strain HK10552). Molecules 15:2782–2790CrossRefGoogle Scholar
  39. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897CrossRefGoogle Scholar
  40. Xiang PU, Li G, Xiao Q, Yi J, Tian Y, Zhang G, Zhao L, Luo Y (2013) Isolation, attenuation, and secondary metabolites of attenuated camptothecin-producing endophytic fungus Aspergillus sp. LY013 from Camptotheca acuminata. Chin J Appl Environ Biol 5:787–793Google Scholar
  41. Yang X, Zhang L, Guo B, Guo S (2004) Preliminary study of a vincristine producing endophytic fungus isolated from leaves of Catharanthus roseus. Chin Tradit Herbal Drugs 35:79–81Google Scholar
  42. Zhou L, Cao X, Yang C, Wu X, Zhang L (2004) Endophytic fungi of Paris polyphylla var. yunnanensis and steroid analysis in the fungi. Nat Prod Res Dev 16:198–200Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. M. Vasanthakumari
    • 1
  • S. S. Jadhav
    • 1
    • 2
  • Naik Sachin
    • 1
  • G. Vinod
    • 1
    • 2
  • Singh Shweta
    • 1
  • B. L. Manjunatha
    • 1
    • 2
  • P. Mohana Kumara
    • 4
  • G. Ravikanth
    • 1
    • 3
  • Karaba N. Nataraja
    • 2
  • R. Uma Shaanker
    • 1
    • 2
    • 3
  1. 1.School of Ecology and ConservationUniversity of Agricultural Sciences, GKVKBengaluruIndia
  2. 2.Department of Crop PhysiologyUniversity of Agricultural Sciences, GKVKBengaluruIndia
  3. 3.Ashoka Trust for Research in Ecology and the EnvironmentBengaluruIndia
  4. 4.Department of ChemistryIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations