World Journal of Microbiology and Biotechnology

, Volume 31, Issue 10, pp 1543–1554 | Cite as

Production and secretion of naphthoquinones is mediated by the MFS transporter MFS1 in the entomopathogenic fungus Ophiocordyceps sp. BCC1869

  • Pratoomporn Khaokhajorn
  • Sompid Samipak
  • Sutichai Nithithanasilp
  • Morakot Tanticharoen
  • Alongkorn AmnuaykanjanasinEmail author
Original Paper


Naphthoquinones are deep red polyketide pigments produced by the ant-pathogenic fungus Ophiocordyceps sp. BCC1869. In culture, biosynthesis of these naphthoquinones remains at a low level during the first 20 days and reaches its maximum production level at approximately 50 days. The MFS transporter gene MFS1 was previously identified in Ophiocordyceps sp. BCC1869 from a subtractive EST library between the fungus grown under naphthoquinone-inductive and naphthoquinone-repressive conditions. We cloned and sequenced this transporter gene, which has an open reading frame of 1505 bp and three introns (48, 52, and 58 bp). Phylogenetic analysis showed this MFS transporter was tightly clustered with fungal riboflavin transporters. Functional analysis of this gene was performed by overexpression of MFS1 under the control of a strong, constitutive promoter. We successfully transformed the fungus with this overexpression plasmid using PEG-protoplast transformation, which generated nine transformants per µg of plasmid. RT-PCR indicated that the MFS1 expression level in the overexpressing strains increased 3- to 10-fold compared to the wild type. HPLC analysis of crude extracts of mutants and wild type demonstrated that four naphthoquinone derivatives, erythrostominone, epierythrostominol, deoxyerythrostominone, and deoxyerythrostominol, were the major naphthoquinones produced and excreted in staggering quantities (20- to 2300-fold) in 7-day old liquid cultures by the mutant C7, compared to the wild type. High resolution electrospray ionization mass spectrometry verified mass spectra of these purified metabolites. Three other naphthoquinone derivatives, whose structures have not been identified, were also detected in high amount in the mutant liquid cultures.


Naphthoquinone MFS transporter Overexpression Ophiocordyceps Secretion Erythrostominone 



We are indebted to Chakapong Intaraudom and Drs. Juntira Panya and Taridaporn Bunyapaiboonsri for great help and advice in chemical analysis. We thank Wiwat Somyong for help in compound extraction. We are also grateful to Dr. Chanikul Chutrakul and Sarocha Panchanawaporn for advice in fungal transformation. This work was supported by the National Center for Genetic Engineering and Biotechnology’s Platform Program.

Supplementary material

11274_2015_1903_MOESM1_ESM.pdf (98 kb)
Supplementary material 1 (PDF 97 kb)


  1. Amnuaykanjanasin A, Daub ME (2009) The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae. Fungal Genet Biol 46:146–158CrossRefGoogle Scholar
  2. Amnuaykanjanasin A, Panchanawaporn S, Chutrakul C, Tanticharoen M (2011) Genes differentially expressed under naphthoquinone-producing conditions in the entomopathogenic fungus Ophiocordyceps unilateralis. Can J Microbiol 57:680–692CrossRefGoogle Scholar
  3. Bendz G (1948) An antibiotic agent from Maramius graminum. Acta Chem Scand 2:192CrossRefGoogle Scholar
  4. Choquer M, Lee MH, Bau HJ, Chung KR (2007) Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett 581:489–494CrossRefGoogle Scholar
  5. Del Sorbo G, Schoonbeek H, De Waard MA (2000) Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30:1–15CrossRefGoogle Scholar
  6. Gardiner DM, Jarvis RS, Howlett BJ (2005) The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. Fungal Genet Biol 42:257–263CrossRefGoogle Scholar
  7. Gill M, Gimenez A (1995) Pigments of fungi. Part 40. Dermocanarins 1–3, unique naphthol- and naphthoquinone-anthraquinone dimers that contain a macrocyclic lactone ring from the fungus Dermocybe canaria Horak. J Chem Soc 6:645–651Google Scholar
  8. Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9CrossRefGoogle Scholar
  9. Haraguchi H, Yokoyama K, Oike S, Ito M, Nozaki H (1997) Respiratory stimulation and generation of superoxide radicals in Pseudomonas aeruginosa by fungal naphthoquinones. Arch Microbiol 167:6–10CrossRefGoogle Scholar
  10. Huang X, Yan A, Zhang X, Xu Y (2006) Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 376:68–78CrossRefGoogle Scholar
  11. Huet AA, Raygada JL, Mendiratta K, Seo SM, Kaatz GW (2008) Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology 154:3144–3153CrossRefGoogle Scholar
  12. Jacobs M, Stahl U (1995) Gene regulation in mycelial fungi. In: Kueck U (ed) The mycota, II; genetics and biotechnology. Springer, New York, pp 155–167CrossRefGoogle Scholar
  13. Keim M, Williams RS, Harwood AJ (2004) An inverse PCR technique to rapidly isolate the flanking DNA of Dictyostelium insertion mutants. Mol Biotechnol 26:221–224CrossRefGoogle Scholar
  14. Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H (2001) Expression cloning of a Na+ -independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. J Biol Chem 276:17221–17228CrossRefGoogle Scholar
  15. Kim JE, Han KH, Jin J, Kim H, Kim JC, Yun SH, Lee YW (2005) Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl Environ Microbiol 71:1701–1708CrossRefGoogle Scholar
  16. Kittakoop P, Punya J, Kongsaeree P, Lertwerawat Y, Jintasirikul A, Tanticharoen M, Thebtaranonth Y (1999) Bioactive naphthoquinones from Cordyceps unilateralis. Phytochemistry 52:453–457CrossRefGoogle Scholar
  17. Kobmoo N, Mongkolsamrit S, Tasanathai K, Thanakitpipattana D, Luangsa-Ard JJ (2012) Molecular phylogenies reveal host-specific divergence of Ophiocordyceps unilateralis sensu lato following its host ants. Mol Ecol 21:3022–3031CrossRefGoogle Scholar
  18. Krypotou E, Scazzocchio C, Diallinas G (2015) Functional characterization of NAT/NCS2 proteins of Aspergillus brasiliensis reveals a genuine xanthine-uric acid transporter and an intrinsically misfolded polypeptide. Fungal Genet Biol 75:56–63CrossRefGoogle Scholar
  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408CrossRefGoogle Scholar
  20. López-Errasquín E, González-Jaén MT, Callejas C, Vázquez C (2006) A novel MFS transporter encoding gene in Fusarium verticillioides probably involved in iron-siderophore transport. Mycol Res 110:1102–1110CrossRefGoogle Scholar
  21. Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994CrossRefGoogle Scholar
  22. Malla S, Niraula NP, Liou K, Sohng JK (2009) Self-resistance mechanism in Streptomyces peucetius: overexpression of drrA, drrB and drrC for doxorubicin enhancement. Microbiol Res. doi: 10.1016/j.micres.2009.04.002 Google Scholar
  23. Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959CrossRefGoogle Scholar
  24. Medentsev AG, Arinbasarova AIu, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Prikl Biokhim Mikrobiol 41:573–577Google Scholar
  25. Mizukami H, Konoshima M, Tabata M (1978) Variation in pigment production in Lithospermum erythrorhizon callus cultures. Phytochemistry 17:95–97CrossRefGoogle Scholar
  26. Pao SS, Paulsen IT, Saier MH Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34Google Scholar
  27. Papageorgiou VP, Winkler A, Sagredos AN, Digenis GA (1979) Studies on the relationship of structure to antimicrobial properties of naphthoquinones and other constituents of Alkanna tinctoria. Planta Med 35:56–60CrossRefGoogle Scholar
  28. Papageorgiou VP, Assimopoulou AN, Ballis AC (2008) Alkannins and shikonins: a new class of wound healing agents. Curr Med Chem 15:3248–3267CrossRefGoogle Scholar
  29. Paulsen IT, Brown MH, Skurray RA (1996) Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608Google Scholar
  30. Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharides and polyphenol component. Plant Mol Biol Rep 15:8–15CrossRefGoogle Scholar
  31. Prathumpai W, Kocharin K, Phimmakong K, Wongsa P (2007) Effects of different carbon and nitrogen sources on naphthoquinone production of Cordyceps unilateralis BCC 1869. Appl Biochem Biotechnol 136:223–232CrossRefGoogle Scholar
  32. Proctor RH, Brown DW, Plattner RD, Desjardins AE (2003) Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol 38:237–249CrossRefGoogle Scholar
  33. Rachamawati R, Kinoshita H, Nihira T (2013) Establishment of transformation system in Cordyceps militaris by using integration vector with benomyl resistance gene. Procedia Environ Sci 17:142–149CrossRefGoogle Scholar
  34. Reader RU, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20CrossRefGoogle Scholar
  35. Reihl P, Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J Biol Chem 280:39809–39817CrossRefGoogle Scholar
  36. Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Springs Harbour Press, New YorkGoogle Scholar
  37. Song E, Malla S, Yang YH, Lee K, Kim EJ, Lee HC, Sohng JK, Oh MK, Kim BG (2011) Proteomic approach to enhance doxorubicin production in panK-integrated Streptomyces peucetius ATCC 27952. J Ind Microbiol Biotechnol 38:1245–1253CrossRefGoogle Scholar
  38. Srinivasan P, Palani SN, Prasad R (2010) Daunorubicin efflux in Streptomyces peucetius modulates biosynthesis by feedback regulation. FEMS Microbiol Lett 305:18–27CrossRefGoogle Scholar
  39. Stergiopoulos I, Zwiers L-H, De Waard MA (2002) Secretion of natural and synthetic toxic compounds from filamentous fungi by membrane transporters of the ATP-binding cassette and major facilitator superfamily. Eur J Plant Pathol 108:719–734CrossRefGoogle Scholar
  40. Sugawara M, Mochizuki T, Takekuma Y, Miyazaki K (2005) Structure-affinity relationship in the interactions of human organic anion transporter 1 with caffeine, theophylline, theobromine and their metabolites. Biochim Biophys Acta 1714:85–92CrossRefGoogle Scholar
  41. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221CrossRefGoogle Scholar
  42. Tsao S, Rahkhoodaee F, Raymond M (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53:1344–1352CrossRefGoogle Scholar
  43. Ullán RV, Liu G, Casqueiro J, Gutiérrez S, Bañuelos O, Martín JF (2002) The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267:673–683CrossRefGoogle Scholar
  44. Unagul P, Wongsa P, Kittakoop P, Intamas S, Srikitikulchai P, Tanticharoen M (2005) Production of red pigments by insect pathogenic fungus Cordyceps unilateralis BCC1869. J Ind Microbiol Biotechnol 32:135–140CrossRefGoogle Scholar
  45. Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946CrossRefGoogle Scholar
  46. Wongsa P, Tasanatai K, Watts P, Hywel-Jones N (2005) Isolation and in vitro cultivation of the insect pathogenic fungus Cordyceps unilateralis. Mycol Res 109:936–940CrossRefGoogle Scholar
  47. Zheng Z, Huang C, Cao L, Xie C, Han R (2011) Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris. Fungal Biol 115:265–274CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Pratoomporn Khaokhajorn
    • 1
    • 2
  • Sompid Samipak
    • 2
  • Sutichai Nithithanasilp
    • 1
  • Morakot Tanticharoen
    • 1
    • 3
  • Alongkorn Amnuaykanjanasin
    • 1
  1. 1.Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)PathumthaniThailand
  2. 2.Department of Genetics, Faculty of ScienceKasetsart UniversityBangkokThailand
  3. 3.School of Bioresources and TechnologyKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations