Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biodegradation of roxarsone by a bacterial community of underground water and its toxic impact

Abstract

Roxarsone is included in chicken food as anticoccidial and mainly excreted unchanged in faeces. Microorganisms biotransform roxarsone into toxic compounds that leach and contaminate underground waters used for human consumption. This study evaluated roxarsone biotransformation by underground water microorganisms and the toxicity of the resulting compounds. Underground water from an agricultural field was used to prepare microcosms, containing 0.05 mM roxarsone, and cultured under aerobic or anaerobic conditions. Bacterial communities of microcosms were characterized by PCR–DGGE. Roxarsone degradation was measured by HPLC/HG/AAS. Toxicity was evaluated using HUVEC cells and the Toxi-ChromoTest kit. Roxarsone degradation analysis, after 15 days, showed that microcosms of underground water with nutrients degraded 90 and 83.3 % of roxarsone under anaerobic and aerobic conditions, respectively. Microcosms without nutrients degraded 50 and 33.1 % under anaerobic and aerobic conditions, respectively. Microcosms including nutrients showed more roxarsone conversion into toxic inorganic arsenic species. DGGE analyses showed the presence of Proteobacteria, Firmicutes, Actinobacteria, Planctomycetes and Spirochaetes. Toxicity assays showed that roxarsone biotransformation by underground water microorganisms in all microcosms generated degradation products toxic for eukaryotic and prokaryotic cells. Furthermore, toxicity increased when roxarsone leached though a soil column and was further transformed by the bacterial community present in underground water. Therefore, using underground water from areas where roxarsone containing manure is used as fertilizer might be a health risk.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmad S, Sayed M, Barua S, Khan M, Faruquee M, Jalil A, Hadi S, Talukder H (2001) Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect 109:629–631

  2. Akinde S, Obire O (2008) Aerobic heterotrophic bacteria and petroleum-utilizing bacteria from cow dung and poultry manure. World J Microbiol Biotechnol 9:1999–2002

  3. Amann R, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

  4. Anderson CE (1999) Arsenicals as feed additives for poultry and swine. In: Lederer WH, Fensterheim RJ (eds) Arsenic–industrial, biomedical, environmental perspectives. Van Nostrand Reinhold Co, New York, pp 89–97

  5. Andreae MO (1979) Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the speciation of a trace element. Limnol Oceanogr 24:440–452

  6. Arai Y, Lanzirotti A, Sutton S, Davis J, Sparks D (2003) Arsenic speciation and reactivity in poultry litter. Environ Sci Technol 37:4083–4090

  7. Arunlertaree C, Moolthongnoi C (2008) The use of fermented feather meal for replacement of fish meal in the diet of Oreochromis niloticus. Environ Nat Resour J 6:13–24

  8. Bansal N, Sinha I, Virdi J (2000) Virulence plasmid (pYV)-associated susceptibility of Yersinia enterocolitica to chlorine and heavy metals. J Appl Microbiol 89:663–667

  9. Barone JR, Schmidt W (2006) Effect of formic acid exposure on keratin fiber derived from poultry feather biomass. Bioresour Technol 97:233–242

  10. Basu P, Ghosh RN, Grove LE, Klei L, Barchowsky A (2008) Angiogenic potential of 3-nitro-4-hydroxy benzene arsonic Acid (roxarsone). Environ Health Perspect 16:520–523

  11. Bednar A, Garbarino J, Ferrer I, Rutherford D, Wershaw R, Ranville J, Wildeman T (2003) Photodegradation of roxarsone in poultry litter leachates. Sci Total Environ 302:237–245

  12. Brosius J, Palmer M, Kennedy P, Noller H (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

  13. Butcher B, Deane S, Rawlings D (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833

  14. Cai J, Salmon K, DuBow M (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144:2705–2713

  15. Campos VL, León C, Mondaca MA, Yáñez J, Zaror C (2011) Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones River, Atacama Desert, Northern Chile. Arch Environ Contam Toxicol 61:185–192

  16. Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

  17. Chapman HD, Johnson ZB (2002) Use of antibiotics and roxarsone in broiler chickens in the USA: analysis of the years 1995 to 2000. Poultry Sci 81:356–364

  18. Chen Y, Graziano J, Parvez F, Liu M, Slavkovich V, Kalra T, Argos M, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, Sarwar G, Levy D, Van Geen A, Ahsan H (2011) Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. Br Med J 342:d2431

  19. Christen K (2001) Environmental news: chickens, manure, and arsenic. Environ Sci Technol 35:184–185

  20. Church C, Kleinman P, Bryant R, Saporito L, Allen A (2010) Occurrence of arsenic and phosphorus in ditch flow from litter-amended soils and barn area. J Environ Qual 39:2080–2088

  21. Cortinas I, Field J, Kopplin M, Garbarino J, Gandolfi A, Sierra-Alvarez R (2006) Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environ Sci Technol 40:2951–2957

  22. Cressman M, Yu Z, Nelson M, Moeller S, Lilburn M, Zerby H (2010) Interrelations between the microbiotas in the litter and in the intestines of commercial broiler chickens. Appl Environ Microbiol 76:6572–6582

  23. Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M (2000) Can excrement and feathers of nestling songbirds be used as biomonitors for heavy metal pollution? Arch Environ Contam Toxicol 39:541–546

  24. Diorio C, Cai J, Marmor J, Shinder R, DuBow M (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056

  25. Dopson M, Lindstrom E, Hallberg K (2001) Chromosomally encoded arsenical resistance of the moderately Thermophilic acidophile Acidithiobacillus caldus. Extremophiles 5:247–255

  26. EPA (1998) Special report on ingested inorganic arsenic Skin cancer nutritional essentiality US Environmental Protection Agency. EPA 625:3–87

  27. EPA (2000) Estándares del Reglamento Nacional Primario de Agua Potable. EPA 815-F-00-007

  28. Garbarino JR, Bednar A, Rutherford D, Beyer R, Wershaw R (2003) Environmental fate of roxarsone in poultry litter I. Degradation of roxarsone during composting. Environ Sci Technol 37:1509–1514

  29. Guzmán-Fierro VG, Moraga R, León CG, Campos VL, Smith C, Mondaca MA (2014) Isolation and characterization of an aerobic bacterial consortium able to degrade roxarsone. Int J Environ Sci Technol 12:1353–1362

  30. Hancock T, Denver J, Riedel G, Miller C (2002) Source transport and fate of arsenic in the Pocomoke River Basin a poultry dominated Chesapeake Bay Watershed. In: Proceedings of Arsenic in the Environment Workshop February 21–22 2001 US Geological Survey Denver Colorado

  31. Jackson B, Bertsch P, Cabrera M, Camberato J, Seaman J, Wood C (2003) Trace element speciation in poultry litter. J Environ Qual 32:535–540

  32. Kiranmayi M, Asok A, Lee B (2015) Organoarsenicals in poultry litter: detection, fate, and toxicity. Environ Int 75:68–80

  33. Kumaresan M, Riyazuddin P (2001) Overview of speciation chemistry of arsenic. Curr Sci 80:837–846

  34. Kuramata M, Futa S, Ryota K, Tadashi A, Maki A, Koji B, Kazuhiro T, Satotu I (2014) Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Environ microbial. doi:10.1111/1462-2920.12572

  35. Kwan K, Dutka B (1992) Evaluation of toxi-chromotest direct sediment toxicity testing procedure and mirotox solid-phase testing procedure. Bull Environ Contam Toxicol 49:656–662

  36. León C, Campos V, Urrutia R, Mondaca M (2012) Metabolic and molecular characterization of bacterial community associated to Patagonian Chilean oligotrophic-lakes of quaternary glacial origin. World J Microbiol Biotechnol 28:1511–1521

  37. Liu H, Wang G, Ge J, Liu L, Chen G (2014) Fate of roxarsone during biological nitrogen removal process in wastewater treatment systems. Chem Eng J 225:500–505

  38. Lovley D, Phillips E (1988) Novel mode of microbial energy metabolism: organic carbon metabolism coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

  39. Maki T, Hasegawa H, Ueda K (2005) Seasonal dynamics of dimethylarsinic-acid-decomposing bacteria dominating in Lake Kahokugata. Appl Organomet Chem 19:231–238

  40. Mangalgiri K, Adak A, Blaney L (2015) Organoarsenicals in poultry litter: detection, fate, and toxicity. Environ Int 75:68–80

  41. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

  42. Meier H, Amann R, Ludwig W, Schleifer K (1999) Specific oligonucleotide probes for in situ detection of a major group of gram-positive bacteria with low DNA G+ C content. Syst Appl Microbiol 22:186–196

  43. Morrison JL (1969) Distribution of arsenic from poultry litter in broiler chickens soil and crops. J Agric Food Chem 17:1288–1290

  44. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

  45. Nachman KE, Graham JP, Price LB, Silbergeld EK (2005) Arsenic: a roadblock to potential animal waste management solutions. Environ Health Perspect 113:1123–1124

  46. Nachman KE, Raber G, Francesconi KA, Navas-Acien A, Love DC (2012) Arsenic species in poultry feather meal. Sci Total Environ 418:183–188

  47. Nachman KE, Baron PA, Raber G, Francesconi KA, Navas-Acien A, Love DC (2013) Roxarsone, inorganic arsenic, and other arsenic species in chicken: a US-based market basket sample. Environ Health Perspect 121:818–824

  48. Neyt C, Iriarte M, Thi VH, Cornelis GR (1997) Virulence and arsenic resistance in Yersiniae. J Bacteriol 179:612–619

  49. Rutherford DW, Bednar AJ, Garbarino JR, Needham R, Staver KW, Wershaw RL (2003) Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Environ Sci Technol 37:1515–1520

  50. Shi L, Wang W, Yuan S, Hu Z (2014) Electrochemical stimulation of microbial roxarsone degradation under anaerobic conditions. Environ Sci Technol 48:7951–7958

  51. Sierra-Alvarez R, Yenal U, Field JA, Kopplin M, Gandolfi AJ, Garbarino JR (2006) Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid. J Agric Food Chem 54:3959–3966

  52. Silbergelda E, Nachmanb K (2008) The environmental and public health risks associated with arsenical use in animal feeds. Ann NY Acad Sci 1140:346–357

  53. Stolz JF, Perera E, Kilonzo B, Kail B, Crable B, Fisher E (2007) Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ Sci Technol 41:818–823

  54. Suzuki K, Wakao N, Kimura T, Sakka K, Ohmiya K (1998) Expression and regulation of the arsenic resistance operon of Acidiphilum multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl Environ Microbiol 64:411–418

  55. Torres SK, Campos VL, León CG, Rodríguez-Llamazares SM, Rojas SM, González M, Smith C, Mondaca MA (2012) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res 14:1236–1244

  56. Torres-Escribano et al (2011) Sci Total Environ 409:604–611

  57. Wershaw R, Garbarino J, Burkhardt M (1999) Roxarsone in natural water systems. In: Effects of Animal Feeding Operations on Water Resources and the Environment Proceedings of Technical Meeting US Geological Survey, Fort Collins, CO

  58. Wiegel J (2009) Family I. Clostridiaceae Pribram 1933, 90AL. In: Whitman WB, Parte AC (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, p 737

  59. Zhang W, Xu F, Han J, Sun Q, Yang K (2015) Comparative cytotoxicity and accumulation of Roxarsone and its photodegradates in freshwater Protozoan Tetrahymena thermophila. J Hazard Mater 286:171–178

  60. Zhanga F, Wanga W, Yuana S, Hua Z (2014) Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. J Hazard Mater 279:562–568

Download references

Acknowledgments

This work was supported by Grant FONDECYT 1110876, CONICYT-CHILE.

Author information

Correspondence to V. L. Campos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mafla, S., Moraga, R., León, C.G. et al. Biodegradation of roxarsone by a bacterial community of underground water and its toxic impact. World J Microbiol Biotechnol 31, 1267–1277 (2015). https://doi.org/10.1007/s11274-015-1886-2

Download citation

Keywords

  • Roxarsone
  • Arsenic
  • Underground-water
  • Microcosms
  • Toxicity
  • Biodegradation