Advertisement

Heterotrophic growth of microalgae: metabolic aspects

  • Daniela Morales-Sánchez
  • Oscar A. Martinez-Rodriguez
  • John Kyndt
  • Alfredo Martinez
Review

Abstract

Microalgae are considered photoautotrophic organisms, however several species have been found living in environments where autotrophic metabolism is not viable. Heterotrophic cultivation, i.e. cell growth and propagation with the use of an external carbon source under dark conditions, can be used to study the metabolic aspects of microalgae that are not strictly related to photoautotrophic growth and to obtain high value products. This manuscript reviews studies related to the metabolic aspects of heterotrophic grow of microalga. From the physiological and metabolic perspective, the screening of microalgal strains in different environments and the development of molecular and metabolic engineering tools, will lead to an increase in the number of known microalgae species that growth under strict heterotrophic conditions and the variety of carbon sources used by these microorganisms.

Keywords

Microalgae Heterotrophic growth Carbon sources Glucose Acetate 

Notes

Acknowledgments

We thank Shirley Ainsworth for providing support for this review. This work was supported by the Universidad Nacional Autónoma de México (UNAM), Grant DGAPA/PAPIIT/UNAM IT200312, and Aeropuertos y Servicios Auxiliares—Consejo Nacional de Ciencia y Tecnología (ASA-CONACyT) Grant 2014-244329. DMS held a scholarship (Number 170123) from CONACyT-México.

References

  1. Albertano P, Ciniglia C, Pinto G, Pollio A (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: and update. Hydrobiologia 433:137–143CrossRefGoogle Scholar
  2. Armbrust E, Berges J, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86CrossRefGoogle Scholar
  3. Barbier G, Oesterhelt C, Larson M (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 37:460–474CrossRefGoogle Scholar
  4. Benedict C (1978) Nature of obligate photoautotrophy. Annu Rev Plant Physiol Plant Mol Biol 29:67–93CrossRefGoogle Scholar
  5. Blanc G, Duncan G, Agarkova I et al (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955CrossRefGoogle Scholar
  6. Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244CrossRefGoogle Scholar
  7. Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:412–426CrossRefGoogle Scholar
  8. Chen G, Chen F (2006) Growing phototrophics cells without light. Biotechnol Lett 28:607–616CrossRefGoogle Scholar
  9. Chen T, Liu H, Lü P, Xue L (2009) Construction of Dunaliella salina heterotrophic expression vectors and identification of heterotrophycally transformed algal strains. Chinese J Biotechnol (Chinese edition) 25:392–398Google Scholar
  10. Cheng Y, Zhou W, Gao C et al (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. Soc Chem Ind 84:777–781Google Scholar
  11. Chi Z, Pyle D, Wen Z et al (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545CrossRefGoogle Scholar
  12. Ciniglia C, Yoon H, Pollio A et al (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 13:1827–1838CrossRefGoogle Scholar
  13. de Swaaf M, Grobben G, Eggink G et al (2001) Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Appl Microbiol Biotechnol 57:395–400CrossRefGoogle Scholar
  14. de Swaaf ME, Pronk JT, Sijtsma L (2003a) Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl Microbiol Biotechnol 61:40–43CrossRefGoogle Scholar
  15. de Swaaf ME, Sijtsma L, Pronk JT (2003b) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672CrossRefGoogle Scholar
  16. Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652CrossRefGoogle Scholar
  17. Doebbe A, Rupprecht J, Beckmann J et al (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131:27–33CrossRefGoogle Scholar
  18. El-Sheekh MM, Bedaiwy MY, Osman ME, Ismail MM (2012) Mixotrophic growth of some microalgae using extract of fungal-treated wheat bran. Int J Recycl Org Waste Agric 1:12CrossRefGoogle Scholar
  19. Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761CrossRefGoogle Scholar
  20. Graverholt O, Eriksen N (2007) Heterotrophic high cell-density fed-batch and continuous flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75CrossRefGoogle Scholar
  21. Gross W, Oesterhelt C (1999) Ecophysiological studies on the red alga Galdieria sulphuraria isolated from South–West Iceland. Plant Biol 1:694–700CrossRefGoogle Scholar
  22. Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638Google Scholar
  23. Gross W, Küver J, Tischendorf G et al (1998) Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur J Phycol 33:25–31CrossRefGoogle Scholar
  24. Gruber P, Frederick S, Tolbert N (1974) Enzymes related to lactate metabolism in green algae and lower land plants. Plant Physiol 53:167–170CrossRefGoogle Scholar
  25. Haass D, Tanner W (1974) Regulation of hexose transport in Chlorella vulgaris. Plant Physiol 53:14–20CrossRefGoogle Scholar
  26. Hallmann A, Sumper M (1996) The Chlorella hexose/H+ symporter is a useful selectable marker and biochemical reagent when expressed in Volvox. Proc Natl Acad Sci USA 93:669–673CrossRefGoogle Scholar
  27. Hiyama T, Nishimura M, Chance B (1969) Energy and electron transfer systems of Chlamydomonas reinhardtii. I. Photosynthetic and respiratory cytochrome systems of the pale green mutant. Plant Physiol 44:527–534CrossRefGoogle Scholar
  28. Hong S, Lee C (2007) Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol Bioprocess Eng 12:165–173CrossRefGoogle Scholar
  29. Hong W-K, Heo S-Y, Oh B-R et al (2013) A transgene expression system for the marine microalgae Aurantiochytrium sp. KRS101 using a mutant allele of the gene encoding ribosomal protein L44 as a selectable transformation marker for cycloheximide resistance. Bioprocess Biosyst Eng 36:1191–1197CrossRefGoogle Scholar
  30. Im C, Vincent D, Regentin R, Coragliotti A (2012) Heterotrophic cultivation of hydrocarbon-producing microalgae. US Patent 8278090Google Scholar
  31. Ip P-F, Chen F (2005a) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496CrossRefGoogle Scholar
  32. Ip P-F, Chen F (2005b) Peroxynitrite and nitryl chloride enhance astaxanthin production by the green microalga Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3595–3599CrossRefGoogle Scholar
  33. Jia Z, Liu Y, Daroch M et al (2014) Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Appl Biochem Biotechnol 173:1667–1679CrossRefGoogle Scholar
  34. Johnson R, Tuchman N, Peterson C (1997) Changes in the vertical microdistribution of diatoms within a developing periphyton mat. J North Am Benthol Soc 16:503–519CrossRefGoogle Scholar
  35. Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509CrossRefGoogle Scholar
  36. Komor E, Tanner W (1978) The hexose-proton symport system of Chlorella vulgaris. Eur J Biochem 44:219–223CrossRefGoogle Scholar
  37. Konings W (2006) Microbial transport: adaptations to natural environments. Antonie Van Leeuwenhoek 90:325–342CrossRefGoogle Scholar
  38. Lee Y (2004) Algal nutrition, heterotrophic carbon nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing Ltd, Oxford, pp 116–124Google Scholar
  39. Lewin R (1962) Physiology and biochemistry of algae, first edit. Academic Press, New YorkGoogle Scholar
  40. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049CrossRefGoogle Scholar
  41. Liang Y, Sarkany N, Cui Y et al (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol 101:3623–3627CrossRefGoogle Scholar
  42. Lu Y, Ding Y, Wu Q (2010) Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol 23:115–121CrossRefGoogle Scholar
  43. Marsh HV, Galmiche JM, Gibbs M (1965) Effect of light on the tricarboxylic acid cycle in Scenedesmus. Plant Physiol 40:1013–1022CrossRefGoogle Scholar
  44. Mendes A, Guerra P, Madeira V et al (2007) Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23:1209–1215CrossRefGoogle Scholar
  45. Mojtaba A, Mohd S, Rosfarizan M et al (2011) Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochem Eng J 53:187–195CrossRefGoogle Scholar
  46. Morales-Sánchez D, Tinoco R, Kyndt J, Martinez A (2013) Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol Biofuels 6(100):1–12Google Scholar
  47. Morales-Sánchez D, Tinoco-Valencia R, Caro-Bermúdez MA, Martinez A (2014) Culturing Neochloris oleoabundans microalga in a nitrogen-limited, heterotrophic fed-batch system to enhance lipid and carbohydrate accumulation. Algal Res 5:61–69CrossRefGoogle Scholar
  48. Nagano N, Taoka Y, Honda D, Hayashi M (2009) Optimization of culture conditions for growth and docosahexaenoic acid production by a marine thraustochytrid, Aurantiochytrium limacinum mh0186. J Oleo Sci 58:623–628CrossRefGoogle Scholar
  49. Neilson A, Lewin R (1974) The uptake and utilization of organic carbon by algae; an essay in comparative biochemistry. Phycologia 13:227–264CrossRefGoogle Scholar
  50. Nozaki H, Takano H, Misumi O et al (2007) A 100%-complete sequence reveals unusually simple genomic features in the host-spring red alga Cyanidioschyzon merolae. BMC Biol 5:1–8CrossRefGoogle Scholar
  51. Oesterhelt C, Schnarrenberger C, Gross W (1999) Characterization of a sugar/polyol-uptake system in the red alga Galdieria sulphuraria. Eur J Phycol 34:271–277CrossRefGoogle Scholar
  52. Palenik B, Grimwood J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710CrossRefGoogle Scholar
  53. Palmisano A, SooHoo J, White D et al (1985) Shade adapted benthic diatoms beneath Antarctica sea ice. J Phycol 21:664–667CrossRefGoogle Scholar
  54. Perez-Garcia O, Escalante F, De-Bashan L, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36CrossRefGoogle Scholar
  55. Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Biores Technol 137:139–146CrossRefGoogle Scholar
  56. Prathima DM, Venkata SG, Venkata MS (2012) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew Energy 43:276–283CrossRefGoogle Scholar
  57. Prochnik SE, Umen U, Nedelcu AM et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226CrossRefGoogle Scholar
  58. Radakovits R, Jinkerson R, Darzins A, Posewitz M (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefGoogle Scholar
  59. Rigano C, Fuggi A, Rigano V, Aliotta G (1976) Studies on utilization of 2-ketoglutarate, glutamate and other amino acids by the unicellular alga Cyanidium caldarium. Arch Microbiol 107:133–138CrossRefGoogle Scholar
  60. Rigano C, Aliotta G, Rigano V et al (1977) Heterotrophic growth patterns in the unicellular alga Cyanidium caldarium. A possible role for threonine dehydrase. Arch Microbiol 113:191–196CrossRefGoogle Scholar
  61. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436CrossRefGoogle Scholar
  62. Ryu B-G, Kim K, Kim J, Han J-I, Yang J-W (2013) Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour Technol 129:351–359CrossRefGoogle Scholar
  63. Sauer N (1986) Hexose transport deficient mutants of Chlorella vulgaris. Planta 168:139–144CrossRefGoogle Scholar
  64. Schilling S, Oesterhelt C (2007) Structurally reduced monosaccharide transporters in an evolutionarily conserved red alga. Biochem J 406:325–331CrossRefGoogle Scholar
  65. Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318CrossRefGoogle Scholar
  66. Shi X-M, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727CrossRefGoogle Scholar
  67. Sun N, Wang Y, Li Y-T et al (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292CrossRefGoogle Scholar
  68. Syrett P, Merrett M, Bocks S (1963) Enzymes of the glyoxylate cycle in Chlorella vulgaris. J Exp Bot 14:249CrossRefGoogle Scholar
  69. Tanner W (2000) Chlorella hexose/H+-symporters. Int Rev Cytol 200:101–141CrossRefGoogle Scholar
  70. Tuchman N, Schollett M, Steven T, Geddes P (2006) Differential heterotrophic utilization of organic compounds by diatoms and bacteria under light and dark conditions. Hydrobiologia 1:38–43Google Scholar
  71. Van Baalam C, Pulish W (1973) Heterotrophic growth of the microalgae. Crit Rev Microbiol 2:229–254CrossRefGoogle Scholar
  72. Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era. J Phycol 41:1077–1093CrossRefGoogle Scholar
  73. Wasmund N (1987) Live algae in deep sediment layers. Int Rev der Gesamten Hydrobiol 4:589–597Google Scholar
  74. Wei A, Zhang X, Wei D et al (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol 36:1383–1389CrossRefGoogle Scholar
  75. Wen ZY, Chen F (2001) A perfusion-cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Appl Microbiol Biotechnol 57:316–322CrossRefGoogle Scholar
  76. Wen Z-Y, Chen F (2002) Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnol Prog 18:21–28CrossRefGoogle Scholar
  77. Wen Z, Jiang Y, Chen F (2002) High cell density culture of the diatom Nitzschia laevis for eicosapentaenoic acid production: fed-batch development. Process Biochem 37:1447–1453CrossRefGoogle Scholar
  78. Wood A, Aurikko J, Kelly D (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanoltrophy? FEMS Microbiol Rev 28:335–352CrossRefGoogle Scholar
  79. Wu Z-Y, Shi C-L, Shi X-M (2007) Modeling of lutein production by heterotrophic Chlorella in batch and fed-batch cultures. World J Microbiol Biotechnol 23:1233–1238CrossRefGoogle Scholar
  80. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36CrossRefGoogle Scholar
  81. Yan D, Lu Y, Chen Y-F, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493CrossRefGoogle Scholar
  82. Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microbial cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102CrossRefGoogle Scholar
  83. Yoon H, Hackett J, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512CrossRefGoogle Scholar
  84. Yoon H, Hackett J, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818CrossRefGoogle Scholar
  85. Zaslavskaia L, Lippmeier J, Shih C et al (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075CrossRefGoogle Scholar
  86. Zhang C, Jeanjean R, Joset F (1998) Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbiol Lett 161:285–292CrossRefGoogle Scholar
  87. Zhang Q, Gradinger R, Zhou Q (2003) Competition within the marine microalgae over the polar dark period in the Greenland Sea of high Arctic. Acta Oceanol Sin 22:233–242Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daniela Morales-Sánchez
    • 1
    • 3
  • Oscar A. Martinez-Rodriguez
    • 1
  • John Kyndt
    • 2
  • Alfredo Martinez
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.College of Science and TechnologyBellevue UniversityBellevueUSA
  3. 3.Department of Biochemistry, College of Agricultural Sciences and Natural ResourcesUniversity of Nebraska–LincolnLincolnUSA

Personalised recommendations