Kinetics and regulation of lactose transport and metabolism in Kluyveromyces lactis JA6

  • A. M. Santos
  • W. B. Silveira
  • L. G. Fietto
  • R. L. Brandão
  • I. M. CastroEmail author
Original Paper


Kluyveromyces lactis strains are able to assimilate lactose. They have been used industrially to eliminate this sugar from cheese whey and in other industrial products. In this study, we investigated specific features and the kinetic parameters of the lactose transport system in K. lactis JA6. In lactose grown cells, lactose was transported by a system transport with a half-saturation constant (K s) of 1.49 ± 0.38 mM and a maximum velocity (V max) of 0.96 ± 0.12 mmol. (g dry weight)−1 h−1 for lactose. The transport system was constitutive and energy-dependent. Results obtained by different approaches showed that the lactose transport system was regulated by glucose at the transcriptional level and by glucose and other sugars at a post-translational level. In K. lactis JA6, galactose metabolization was under glucose control. These findings indicated that the regulation of lactose-galactose regulon in K. lactis was similar to the regulation of galactose regulon in Saccharomyces cerevisiae.


Kluyveromyces Lactose transport Glucose control Regulation 



This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais and from the Conselho Nacional de Desenvolvimento Científico e Tecnológico to Castro, I.M. This manuscript was revised by Write Science Right.


  1. Baruffini E, Goffrini P, Donnini C, Lodi T (2006) Galactose transport in Kluyveromyces lactis: major role of the glucose permease Hgt1. FEMS Yeast Res 6:1235–1242CrossRefGoogle Scholar
  2. Batista AS, Miletti LC, Stambuk BU (2004) Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J Mol Biotechnol 8:26–33CrossRefGoogle Scholar
  3. Becerra M, Tarrio N, González-Ciso MI, Cerdán ME (2004) Respirofermentative metabolism in Kluyveromyces lactis in wild-type and rag2 mutant strains. Genome 47:970–978CrossRefGoogle Scholar
  4. Belem MAF, Lee BH (1998) Production of bioingredients from Kluyveromyces marxianus grown on whey: an alternative. CRC Crit Rev Food Sci Nutr 38:565–598CrossRefGoogle Scholar
  5. Billard P, Menart S, Blaisonneau J, Bolotin-Fukuhara M, Fukuhara H, Wésolowski-Louvel M (1996) Glucose Uptake in Kluyveromyces lactis: role of the HGT1 gene. J Bacteriol 178:5860–5866Google Scholar
  6. Boze H, Moulin G, Galzy P (1987) Uptake of galactose and lactose by Kluyveromyces lactis: biochemical characteristics and attempted genetical analysis. J Gen Microbiol 133:15–23Google Scholar
  7. Breunig KD, Kuger P (1987) Functional homology between the yeast regulatory proteins GAL4 and LAC9: LAC9-mediated transcriptional activation in Kluyveromyces lactis involves protein binding to a regulatory sequence homologous to the GAL4 protein-binding site. Mol Cel Biol 7:4400–4406Google Scholar
  8. Breunig KD, Bolotin-Fukuhara M, Bianchi MM, Bourgarel D, Falcone C, Ferrero II, Frontali L, Goffrini P, Krijger JJ, Mazzoni C, Milkowski C, Steensma HY, Wésolowski-Louvel M, Zeeman AM (2000) Regulation of primary carbon metabolism in Kluyveromyces lactis. Enzyme Microb Tech 26:771–780CrossRefGoogle Scholar
  9. Brondijk TH, Konings WN, Poolman B (2001) Regulation of maltose transport in Saccharomyces cerevisiae. Arch Microbiol 176:96–105CrossRefGoogle Scholar
  10. Castro IM, Loureiro-Dias MC (1991) Glycerol utilization in Fusarium oxysporum var. lini: regulation of transport and metabolism. J Gen Microbiol 137:1497–1502CrossRefGoogle Scholar
  11. Dickson RC, Barr K (1983) Characterization of lactose transport in Kluyveromyces lactis. J Bacteriol 154:1245–1251Google Scholar
  12. Diezemann A, Boles E (2003) Functional characterization of the Frt1 sugar transporter and of fructose in Kluyveromyces lactis. Curr Genet 43:281–288CrossRefGoogle Scholar
  13. Dong J, Dickson RC (1997) Glucose represses the lactose-galactose regulon in Kluyveromyces lactis through a SNF1 and MIG1-dependent pathway that modulates galactokinase (GAL1) gene expression. Nucleic Acids Res 25:3657–3664CrossRefGoogle Scholar
  14. Fukuhara H (2003) The Kluyver effect revisited. FEMS Yeast Res 3:327–331CrossRefGoogle Scholar
  15. Gödecke A, Zacharie W, Arvaniditis A, Breunig KD (1991) Coregulation of the Kluyveromyces lactis lactose permease and β-galacotosidase genes is achieved by interaction of multiple LAC9 binding sites in a 26 kbp divergent promoter. Nucleic Acids Res 19:5351–5358CrossRefGoogle Scholar
  16. Goffrini P, Wésolowski-Louvel M, Ferrero I, Fukuhara H (1990) RAG1 gene of the yeast Kluyveromyces lactis codes for a sugar transporter. Nucleic Acids Res 18:5294CrossRefGoogle Scholar
  17. González-Siso MI, Garcia-Leiro A, Tarrío N, Cerdám ME (2009) Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis. Microb Cell Fact. doi: 10.1186/1475-2859-8-46 Google Scholar
  18. Horák J (2013) Regulations of sugar transporters: insights from yeast. Curr Genet. doi: 10.1007/s00294-013-0388-8 Google Scholar
  19. Jules M, Guillou V, Francois J, Parrou JL (2004) Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae. Appl Envir Microbiol 70:2771–2778CrossRefGoogle Scholar
  20. Koutinas AA (2003) Kefir yeast technology. In: Pandey A, Roussos S, Soccol CR, Augur C (eds) New horizons in biotechnology. Kluwer, Dordrecht, pp 297–310CrossRefGoogle Scholar
  21. Loureiro-Dias MC, Peinado JM (1984) Transport of maltose in Saccharomyces cerevisiae. Effect of pH and potassium ions. Biochem J 222:293–298Google Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  23. Milkowski C, Krampe S, Weirich J, Hasse V, Boles E, Breunig KD (2001) Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake. J Bacteriol 183:5223–5229CrossRefGoogle Scholar
  24. Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Reviews 63:554–569Google Scholar
  25. Rigamonte TA, Silveira WB, Fietto LG, Castro IM, Breunig KD, Passos FML (2011) Restricted sugar uptake by sugar-induced internalization of the yeast lactose/galactose permease Lac12. FEMS Yeast Res 11:243–251CrossRefGoogle Scholar
  26. Riley MI, Sreekrishna K, Bhairi S, Dickson RC (1987) Isolation and characterization of mutants of Kluyveromyces lactis defective in lactose transport. Mol Gen Genet MGG 208:145–151CrossRefGoogle Scholar
  27. Rodicio R, Heinisch JJ (2013) Yeast on the milk way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30:165–167CrossRefGoogle Scholar
  28. Rubio-Texeira M (2006) Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 24:212–225CrossRefGoogle Scholar
  29. Sreekrishna K, Dickson RC (1985) Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc Nat Acad Sci USA 82:7909–7913CrossRefGoogle Scholar
  30. Stambulk BU, de Araujo PS (2001) Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae. FEMS Yeast Res 1:73–78Google Scholar
  31. Takacova M, Skelenar P, Gbelska Y, Breunig K, Subik J (2002) Isolation, heterological cloning and sequencing of the RPL28 gene in Kluyveromyces lactis. Curr Genet 42:21–26CrossRefGoogle Scholar
  32. Wiedemuth C, Breunig KD (2005) Role of Snf1p in regulation of intracellular sorting of the lactose and galactose transporter Lac12p in Kluyveromyces lactis. Eukaryot Cell 4:716–721CrossRefGoogle Scholar
  33. Yang ST, Silva EM (1995) Novel products and new technologies for use a familiar carbohydrate, milk lactose. J Dairy Sci 78:2541–2546CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. M. Santos
    • 1
  • W. B. Silveira
    • 2
  • L. G. Fietto
    • 3
  • R. L. Brandão
    • 1
  • I. M. Castro
    • 1
    Email author
  1. 1.Núcleo de Pesquisas em Ciências Biológicas, Escola de FarmáciaUniversidade Federal de Ouro PretoOuro PretoBrazil
  2. 2.Departamento de MicrobiologiaUniversidade Federal de ViçosaViçosaBrazil
  3. 3.Departamento de Bioquímica e Biologia MolecularUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations