Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere


The aim of this work was to isolate enzyme-producing microorganisms from the tract of the termite Reticulitermes santonensis. The microorganisms were extracted from the guts and anaerobic (CO2 or CO2/H2) and micro-aerobic atmospheres were used to stimulate growth. Three different strategies were tried out. First, the sample was spread on Petri dishes containing solid media with carboxymethylcellulose, microcrystalline cellulose or cellobiose. This technique allowed us to isolate two bacteria: Streptomyces sp. strain ABGxAviA1 and Pseudomonas sp. strain ABGxCellA. The second strategy consisted in inoculating a specific liquid medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. The samples were then spread on Petri dishes with the same specific medium containing carboxymethylcellulose, microcrystalline cellulose, or cellobiose. This led to the isolation of the mold Aspergillus sp. strain ABGxAviA2. Finally, the third strategy consisted in heating the first culture and spreading samples on agar plates containing rich medium. This led to the isolation of the bacterium Bacillus subtilis strain ABGx. All those steps were achieved in controlled atmospheres. The four enzyme-producing strains which were isolated were obtained by using a micro-aerobic atmosphere. Later, enzymatic assays were performed on the four strains. Streptomyces sp. strain ABGxAviA1 was found to produce only amylase, while Pseudomonas sp. strain ABGxCellA was found to produce β-glucosidase as well. Aspergillus sp. strain ABGxAviA2 showed β-glucosidase, amylase, cellulase, and xylanase activities. Finally, B. subtilis strain ABGx produced xylanase and amylase.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

  2. Austin JW, Szalanski AL, Scheffrahn RH, Messenger MT, Dronnet S, Bagnères A-G (2005) Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Genetics 98:395–401

  3. Barbesgaard P, Heldt-Hansen HP, Diderichsen B (1992) On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol 36:569–572

  4. Bashir Z, Kondapalli VK, Adlakha N, Sharma A, Bhatnagar RK, Chandel G, Yazdani SS (2013) Diversity and functional significance of cellulolytic microbes living in termite, pill-bug and stem-borer guts. Sci Rep 3:2558. doi:10.1038/srep02558

  5. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol 39:453–487. doi:10.1146/annurev.en.39.010194.002321

  6. Brüne A, Stingl U (2006) Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. Prog Mol Sub Biol 41:39–60

  7. Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687

  8. Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39:851–860. doi:10.1007/s10295-012-1093-1

  9. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57:503–507. doi:10.1007/s00284-008-9276-8

  10. Kimura T, Ogata M, Yoshida M, Nakakuki T (1988) Continuous production of maltotetraose using immobilized Pseudomonas stutzeri amylase. Biotechnol Bioeng 32:669–676. doi:10.1002/bit.260320512

  11. König H, Fröhlich J, Hertel H (2006) Diversity and lignocellulolytic activities of cultured microorganisms. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, Germany, pp 271–294

  12. Lane D (1991) 16S/23S rRNA sequencing. Wiley, New York

  13. Longnecker K, Reysenbach AL (2001) Expansion of the geographic distribution of a novel lineage of epsilon-proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293. doi:10.1111/j.1574-6941.2001.tb00814.x

  14. Lynd LR, Grethlein HE (1987) Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum. Biotechnol Bioeng 29:92–100. doi:10.1002/bit.260290114

  15. Mathew GM, Ju Y-M, Lai C-H, Mathew DC, Huang CC (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. FEMS Microbiol Ecol 79:504–517. doi:10.1111/j.1574-6941.2011.01232.x

  16. Mathew GM, Mathew DC, Lo S-H, Alexios GM, Yang J-C, Sashikumar JM, Shaikh TM, Huang C-C (2013) Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production. Bioresour Technol 145:337–344. doi:10.1016/j.biortech.2012.12.055

  17. Mattéotti C, Bauwens J, Brasseur C, Tarayre C, Thonart P, Destain J, Francis F, Haubruge E, De Pauw E, Portetelle D, Vandenbol M (2012) Identification and characterization of a new xylanase from gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expr Purif 83(2):117–127. doi:10.1016/j.pep.2012.03.009

  18. Pasti MB, Belli ML (1985) Cellulolytic activity of actinomycetes isolated from termites (Termitidae) gut. FEMS Microbiol Lett 26(1):107–112. doi:10.1111/j.1574-6968.1985.tb01574.x

  19. Planchot V, Colonna P (1995) Purification and characterization of extracellular alpha-amylase from Aspergillus fumigatus. Carbohydr Res 7:225–229. doi:10.1016/S0141-0229(85)80007-7

  20. Pourramezan Z, Ghezelbash GR, Romani B, Ziaei S, Hedayatkhah A (2012) Screening and identification of newly isolated cellulose degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri). Mikrobiologiia 81(6):736–742. doi:10.1134/S0026261712060124

  21. Rickard PA, Ghani BA, Lucas RJ, Dunn NW (1989) Kinetic properties and contribution to cellulose saccharification of a cloned Pseudomonas beta-glucosidase. Aust J Biotechnol 3:43–49

  22. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PWM (2002) On the safety of Aspergillus niger: a review. Appl Microbiol Biotechnol 59:426–435. doi:10.1007/s00253-002-1032-6

  23. Tarayre C, Brognaux A, Brasseur C, Bauwens J, Millet C, Mattéotti C, Destain J, Vandenbol M, Portetelle D, De Pauw E, Haubruge E, Francis F, Thonart P (2013) Isolation and cultivation of a xylanolytic Bacillus subtilis extracted from the gut of the termite Reticulitermes santonensis. Appl Biochem Biotechnol 171(1):225–245. doi:10.1007/s12010-013-0337-5

  24. Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME (2009) Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2:25. doi:10.1186/1754-6834-2-25

  25. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

  26. Vukelić B, Ritonja A, Renko M, Pokorny M, Vitale L (1992) Extracellular alpha-amylase from Streptomyces rimosus. Appl Microbiol Biotechnol 37:202–204. doi:10.1007/BF00178171

  27. Wase DAJ, Raymahasay S, Wang CW (1985) Production of β-D-glucosidase, endo-1,4-β-D-glucanase and D-xylanase from straw by Aspergillus fumigatus IMI 255091. Enzym Microb Technol 7:225–229. doi:10.1016/S0141-0229(85)80007-7

  28. Watanabe Y, Shinzato N, Fukatsu T (2003) Isolation of actinomycetes from termites’ guts. Biosci Biotechnol Biochem 67(8):1797–1801

  29. Yang H, Schmitt-Wagner D, Stingl U, Brune A (2005) Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol 7:916–932. doi:10.1111/j.1462-2920.2005.00760.x

Download references


This work was supported by an ARC contract (Action de Recherche Concertée; agreement Gembloux Agro-Bio Tech no. ARC 08-13/02).

Author information

Correspondence to Cédric Tarayre.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tarayre, C., Brognaux, A., Bauwens, J. et al. Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere. World J Microbiol Biotechnol 30, 1655–1660 (2014).

Download citation


  • Termite
  • Bacillus
  • Pseudomonas
  • Streptomyces
  • Aspergillus
  • Atmosphere