Bacteria recovered from a high-altitude, tropical glacier in Venezuelan Andes

  • María M. Ball
  • Wileidy Gómez
  • Xavier Magallanes
  • Rita Rosales
  • Alejandra Melfo
  • Luis Andrés YarzábalEmail author
Original Paper


Glacial-ice microorganisms are intensively studied world-wide for a number of reasons, including their psychrophilic lifestyle, their usefulness in biotechnology procedures and their relationship with the search of life outside our planet. However, because of the difficulties for accessing and working at altitudes of >5.000 m above sea level, tropical glaciers have received much less attention than their arctic and antarctic counterparts. In the present work we isolated and characterized a total of forty-five pure isolates originating from direct plating of melted ice collected at the base of a rapidly-retreating, small glacier located at around 4.900 m.a.s.l. in Mount Humboldt (Sierra Nevada National Park, Mérida State, Venezuela). Initial examination of melted ice showed the presence of abundant- (>106 cells ml−1), morphologically diverse- and active bacterial cells, many of which were very small (“dwarf cells”). The majority of the isolates were psychrophilic or psychrotolerant and many produced and excreted cold-active extracellular enzymes (proteases and amylases). The antibiotic tests showed an elevated percentage of isolates resistant to high doses (100 μg/ml) of different antibiotics including ampicillin, penicillin, nalidixic acid, streptomycin, chloramphenicol, kanamycin and tetracycline. Multiresistance was also observed, with 22.22 % of the strains simultaneously resistant up to five of the antibiotics tested. Metal resistance against Ni++, Zn++ and Cu++ was also detected. In accordance with these results, plasmids of low and high molecular weight were detected in 47 % of the isolates. Twenty-two partial 16S rDNA sequences analyzed allowed grouping the isolates within five different phyla/classes: Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Flavobacteria. This is the first report concerning South American Andean glacial ice microorganisms.


Bacteria Psychrophiles Tropical glaciers Ice-bacteria Glacier ice Andes Mountains 



The authors are grateful to Mr. Jorge Férnandez B. and Dr. Andrés Eloy Mora (from the LAQEM Lab ULA, Mérida) for their technical assistance in Electronic Microscopy imaging. This work was partially financed by Fondo Nacional de Ciencias, Tecnología e Innovación (FONACIT) Project No. 2011001187.

Supplementary material

11274_2013_1511_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  2. Baker-Austin C, Wrigth MS, Stepanauskas R, McArthur JV (2006) Co-selection for antibiotic and metal resistance. Trends Microbiol 14:176–182CrossRefGoogle Scholar
  3. Braun C, Bezada M (2013) The history and disappearance of glaciers in Venezuela. J Latin Am Geogr 12:85–124CrossRefGoogle Scholar
  4. Carrillo E, Yépez S (2010) Evolution of glaciers in the Venezuelan Andes: glaciers of the peaks Humboldt and Bonpland. VII International meeting of researchers working with snow and ice from Latin America IHP—UNESCO. Magazine INGEOMINAS—Glaciares, nieves y hielos de América Latina Cambio climático y amenazas. Manizales, Colombia. pp 123–136Google Scholar
  5. D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389CrossRefGoogle Scholar
  6. Hogan D, Kolter R (2002) Why are bacteria refractory to antimicrobials? Curr Opin Microbiol 5:472–477CrossRefGoogle Scholar
  7. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132CrossRefGoogle Scholar
  8. Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Global Planet Change 22:93–103CrossRefGoogle Scholar
  9. Kotchoni SO, Gachomo EW, Betiku E et al (2003) A home made kit for plasmid DNA mini-preparation. Afr J Biotechnol 2:86–87Google Scholar
  10. Margesin R (2009) Effect of temperature of growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262CrossRefGoogle Scholar
  11. Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361CrossRefGoogle Scholar
  12. McDougald D, Rice SA, Weichart D, Kjelleberg S (1998) Nonculturability: adaptation or debilitation? FEMS Microbiol Ecol 25:1–9CrossRefGoogle Scholar
  13. Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R et al (eds) Psychrophiles: from biodiversity to biotechnology. Springer-Verlag, Berlin, pp 31–50CrossRefGoogle Scholar
  14. Miteva V, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Env Microbiol 70:1202–1213CrossRefGoogle Scholar
  15. Møller AK, Barkay T, Al-Soud WA, Sørensen SJ, Skov H, Kroer N (2011) Diversity and characterization of mercury-resistant bacteria in snow, freshwaterand sea-ice brine from the High Arctic. FEMS Microbiol Ecol 75:390–401CrossRefGoogle Scholar
  16. Pérez E, Sulbarán M, Ball MM, Yarzábal LA (2007) Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biol Biochem 39:2905–2914CrossRefGoogle Scholar
  17. Petrova M, Gorlenko Z, Mindlin S (2009) Molecular structure and translocation of a multiple antibiotic resistance region of a Psychrobacter psychrophilus permafrost strain. FEMS Microbiol Lett 296:190–197CrossRefGoogle Scholar
  18. Rabatel A, Francou B, Soruco A et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102CrossRefGoogle Scholar
  19. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7Google Scholar
  20. Rogers SO, Starmer WT, Castello JD (2004) Recycling of pathogenic microbes through survival in ice. Med Hypotheses 63:773–777CrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Lab Press, New YorkGoogle Scholar
  23. Summers AO (2002) Generally overlooked fundamentals of bacterial genetics and ecology. Clin Infect Dis 34:S85–S92CrossRefGoogle Scholar
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 10:2731–2739CrossRefGoogle Scholar
  25. Tshape H (1994) The spread of plasmids as a function of bacterial adaptability. FEMS Microbiol Ecol 15:23–32CrossRefGoogle Scholar
  26. Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate change model: temperature and precipitation simulations for the 21st century. J Geophys Res 114:1–15Google Scholar
  27. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99CrossRefGoogle Scholar
  28. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRefGoogle Scholar
  29. Weisburg S, Barnes SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • María M. Ball
    • 1
  • Wileidy Gómez
    • 1
  • Xavier Magallanes
    • 1
  • Rita Rosales
    • 1
  • Alejandra Melfo
    • 2
  • Luis Andrés Yarzábal
    • 1
    Email author
  1. 1.Laboratorio de Microbiología Molecular y Biotecnología, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela
  2. 2.Facultad de Ciencias, Centro de Física FundamentalUniversidad de Los AndesMéridaVenezuela

Personalised recommendations