Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens

  • 716 Accesses

  • 19 Citations


In this study, we investigated the antimicrobial effect of tea polyphenols (TP) against Serratia marcescens and examined the related mechanism. Morphology changes of S. marcescens were first observed by transmission electron microscopy after treatment with TP, which indicated that the primary inhibition action of TP was to damage the bacterial cell membranes. The permeability of the outer and inner membrane of S. marcescens dramatically increased after TP treatment, which caused severe disruption of cell membrane, followed by the release of small cellular molecules. Furthermore, a proteomics approach based on two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis was used to study the difference of membrane protein expression in the control and TP treatment S. marcescens. The results showed that the expression of some metabolism enzymes and chaperones in TP-treated S. marcescens significantly increased compared to the untreated group, which might result in the metabolic disorder of this bacteria. Taken together, our results first demonstrated that TP had a significant growth inhibition effect on S. marcescens through cell membrane damage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Almajano MP, Rosa CJ, Angel LJZ, Michael HG (2008) Antioxidant and antimicrobial activities of tea infusions. Food Chem 108:55–63

  2. Anna RB, La Simona TM, Gioia B, Spiridione G, Vincenzo E, Dario R (2003) (−)Epigallocatechin-3-gallate inhibits gelatinase activity of some bacterial isolates from ocular infection, and limits their invasion through gelatine. Biochim Biophys Acta 1620:273–281

  3. Backert S, Kwok T, Schmid M, Selbach M, Moese S, Peek RM, Konig W, Meyer TF, Jungblut PR (2005) Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 5:1331–1345

  4. Campos FM, Couto JA, Hogg TA (2003) Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii. J Appl Microbiol 94:167–174

  5. Carson CF, Mee BJ, Riley TV (2002) Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 46:1914–1920

  6. Chris ZC, Stuart LC (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

  7. Cooper R, Morré DJ, Morré DM (2005) Medicinal benefits of green tea: Part I. Review of noncancer health benefits. J Altern Complem Med 11(3):521–528

  8. Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA, Booth NA (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651

  9. Dallo SF, Kannan TR, Blaylock MW, Baseman JB (2002) Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol Microbiol 46:1041–1051

  10. Daniel LM, Derya G, Betül G, Matthew JE, Carole AL, Steve S, Simon JD (2010) Assessment of Chlorogloeopsis as a novel microbial dietary supplement for red tilapia (Oreochromis niloticus). Aquaculture 299:128–133

  11. De Reu K, Grijspeerdt K, Messens W, Heyndrickx M, Uyttendaele M, Debevere J, Herman L (2006) Eggshell factors influencing eggshell penetration and whole egg contamination by different bacteria, including Salmonella enteritidis. Int J Food Microbiol 112:253–260

  12. del Castillo U, Fernández-Higuero JÁ, Pérez-Acebrón S, Moro F, Muga A (2010) Nucleotide utilization requirements that render ClpB active as a chaperone. FEBS Lett 584:929–934

  13. Dhamodharan B, Chandran S, Shunmugiah KP (2012) Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections. Bioorg Med Chem Lett 22(9):3089–3094

  14. Doyle MP, Beuchat LR, Montville TJ (2001) Food microbiology: fundamentals and frontiers, vol 475. ASM Press, Washington, DC

  15. Ewalt KL, Hendrick JP, Houry WA, Hartl FU (1997) In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90:491–500

  16. Falla TJ, Hancock RE (1997) Improved activity of a synthetic indolicidin analog. Antimicrob Agents Chemother 41:771–775

  17. Frei B, Higdon JV (2003) Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr 133(10):3275S–3284S

  18. Genevaux P, Georgopoulos C, Kelley WL (2007) The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol 66:840–857

  19. Gran HM, Wetlesen A, Mutukumira AN, Rukure G, Narvhus JA (2003) Occurrence of pathogenic bacteria in raw milk, cultured pasteurised milk and naturally soured milk produced at small-scale dairies in Zimbabwe. Food Control 14:539–544

  20. Hajime I, Taiji N, Yukihiko H, Tadakatsu S (1993) Bactericidal catechins damage the lipid bilayer. BBA 1147(1):132–136

  21. Hamilton-Miller JM (1995) Antimicrobial properties of tea (Camellia sinensis L.). Antimicrob Agents Chemother 39(11):2375–2377

  22. Hartl FU, Hayer HM (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

  23. Hejazi A, Falkiner FR (1997) Serratia marcescens. J Med Microbiol 46(11):903–912

  24. Hemingway RW, Laks PE (1992) Plant polyphenols: synthesis, properties, significance, vol 59. Springer, Berlin

  25. Hermann B, Üner K (2003) Genetic manipulation of glycine decarboxylation. J Exp Bot 54(387):1523–1535

  26. Ibrahim HR, Sugimoto Y, Aoki T (2000) Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. BBA 1523:196–205

  27. Karring H, Andersen GR, Thirup SS, Nyborg J, Spremulli LL, Clark BFC (2002) Isolation crystallisation, and preliminary X-ray analysis of the bovine mitochondrial EF-Tu: GDP and EF-Ts complexes. BBA 11601:172–177

  28. Kler A, Zenger R, Dimpfel W (Jun 2009) Green tea extract, especially for use as a functional food item, food supplement or corresponding ingredient, the use thereof and method for producing said green tea extract, European patent application, Patno:Ep2066186

  29. Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Débarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauël C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Séror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100(8):4678–4683

  30. Kohda C, Yanagawa Y, Shimamura T (2008) Epigallocatechin gallate inhibits intracellular survival of Listeria monocytogenes in macrophages. Biochem Biophys Res Commun 365(2):310–315

  31. Li-Hua J, Hyun JU, Chun JY, Yang HK, Jung HL (2008) Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. J Biotechnol 138:80–87

  32. Mamoru O, Takuo S, Kazuhiko H, Reiichiro S, Mizuki H, Eiji H, Chizuko Y, Hajime K (2011) Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from Mastitis. Vet Microbiol 154:202–207

  33. Maurizi MR, Xia D (2004) Protein binding and disruption by Clp/Hsp100 chaperones. Structure 12:175–183

  34. Mee JH, Sang YL, Seung TK, Sang GN, Won HH (2010) Biotechnological applications of microbial proteomes. J Biotechnol 145:341–349

  35. Mogk A, Haslberger T, Tessarz P, Bukau B (2008) Common and specific mechanisms of AAA + proteins involved in protein quality control. Biochem Soc Trans 36:120–125

  36. Nakane H, Ono K (1990) Differential inhibitory effects of some catechin derivatives on the activities of human immunodeficiency virus reverse transcriptase and alular deoxyribonudeic and ribonucleic acid polymerases. Biochemistry 29:2841–2845

  37. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

  38. Nur KK, Allan S, Daniel EO, Gönül D (2010) Proteomic changes in response to chromium (VI) toxicity in Pseudomonas aeruginosa. Bioresour Technol 101:2134–2140

  39. Ouoba LII, Diawara B, Jespersen L, Jakobsen M (2007) Antimicrobial activity of Bacillus subtilis and Bacillus pumilus during the fermentation of African locust bean (Parkia biglobosa) for Soumbala production. J Appl Microbiol 102:963–970

  40. Perumalla AVS, Hettiarachchy NS (2011) Green tea and grape seed extracts—potential applications in food safety and quality. Food Res Int 44(4):827–839

  41. Rui N, Lihan T, Woo-Seok C (2008) Effective reduction of truncated expression of gloshedobin in Escherichia coli using molecular chaperone ClpB. Chem Eng Sci 63:2875–2880

  42. Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ElizabethSC, Siddiqui SM, Wah DA, Baker TA (2004) Sculpting the proteome with AAA + proteases and disassembly machines. Cell 119:9–18

  43. Sehdev PS, Donnenberg MS (1999) Arcanum: the 19th-century Italian pharmacist pictured here was the first to characterize what are now known to be bacteria of the genus Serratia. Clin Infect Dis 29(4):770–925

  44. Shannon MD, Sue W (2008) Hsp104 and ClpB: protein disaggregating machines. Trends Biochem Sci 34(1):40–48

  45. Shimamura T, Hara Y (1992) Method of inhibiting and treating infection caused by influenza virus. US Patent. 5137922

  46. Shumin Y, Jian-rong L, Jun-li Z, Yi L, Linglin F, Wei C, Xuepeng L (2011) Effect of tea polyphenols on microbiological and biochemical quality of Collichthys fish ball. J Sci Food Agric 91(9):1591–1597

  47. Stephan W, James Z, Rodney N, Stanley DD, Roderick AC (2000) Localization of the δ subunit in the Escherichia coli F1F0-ATPsynthase by immuno electron microscopy: the δ subunit binds on top of the F1. J Mol Biol 295:387–391

  48. Taguri T, Tanaka T, Kouno I (2004) Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull 27:1965–1969

  49. Vaquero MJ, Alberto MR, Nadra MC (2007) Antibacterial effect of phenolic compounds from different wines. Food Control 18(2):93–101

  50. Vlamis-Gardikas A (2008) The multiple functions of the thiol-based electron flow pathways of Escherichia coli: eternal concepts revisited. Biochim Biophys Acta 1780:1170–1200

  51. Wei-Hua Z, Zhi-Qing H, Yukihiko H, Tadakatsu S (2002) Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother 46:2266–2268

  52. Wu CD, Wei GX (2002) Tea as a fun evaluation of antimicrobial efficacy of herbal alternatives (Triphala and Green Tea Polyphenols), MTAD, and 5% sodium hypochlorite against Enterococcus faecalis biofilm formed on tooth ctional food for oral health. Nutrition 18(5):443–444

  53. Yaroslav RN, Elena VM (2006) Application of rigid body mechanics to theoretical description of rotation within F0F1-ATP synthase. J Theor Biol 242:300–308

  54. Yu LR, Shao XX, Jiang WL, Xu D, Chang YC, Xu YH, Xia QC (2001) Proteome alterations in human hepatoma cells transfected with antisense epidermal growth factor receptor sequence. Electrophoresis 21:3666–3672

Download references


This study were supported by the grant from the The National Natural Science Foundation of China (No. 31301418), (No. 31071514), and (No. 31271954), National Key Technologies R&D Program of China during the 12th Five-Year Plan Period (No. 2012BAD29B06), Most Important Program for doctor culture Program Foundation of Education Department of Central Government (No. 20113326130001), Food Safety Key Laboratory of Liaoning Province and Engineering and Technology Research Center of Food preservation, Processing and Safety Control of Liaoning Province, The Major Programs for the Science and Technology of Zhejiang Province (No. 2009C03017-5), The Program for the Science & Technology of Zhejiang Province (2012C22049).

Author information

Correspondence to Jianrong Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yi, S., Wang, W., Bai, F. et al. Antimicrobial effect and membrane-active mechanism of tea polyphenols against Serratia marcescens . World J Microbiol Biotechnol 30, 451–460 (2014). https://doi.org/10.1007/s11274-013-1464-4

Download citation


  • Tea polyphenols
  • Serratia marcescens
  • Membrane-active mechanism