World Journal of Microbiology and Biotechnology

, Volume 30, Issue 2, pp 539–545 | Cite as

Cyanobacteria as a source of hydrogen for methane formation

  • Andreas BergEmail author
  • Peter Lindblad
  • Bo Håkan Svensson
Original Paper


In a study during the 1970s co-variation of nitrogenase activity and methane formation associated with Sphagnum riparium was observed. This was suggested as evidence for a possible mechanism of hydrogen transfer from cyanobacteria to methanogens. We show experimentally that such a pathway is feasible. In a series of laboratory experiments, using a hydrogenase deficient strain of the heterocystous cyanobacterium Nostoc punctiforme and the hydrogenotrophic methanogen Methanospirillum hungateii in co-cultures, increasing light intensities resulted in elevated nitrogenase activity and methane production. The increase in methane production can be directly deduced from the nitrogenase activity of the N. punctiforme based on hydrogen balance calculations. These experimental results clearly suggest the possible existence of a novel photosynthetically regulated pathway for methane formation.


Cyanobacteria Hydrogen production Methane production Methanogenic archaea 



This work was funded by the Swedish Research Council and the Swedish Energy Agency. The authors are grateful to Dr Pia Lindberg at Uppsala University for supplying the N. punctiforme strain NMH5.


  1. Angel R, Matthies D, Conrad R (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6:e20453CrossRefGoogle Scholar
  2. Basilier K, Granhall U, Stenström T-A (1978) Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos 31:236–246CrossRefGoogle Scholar
  3. Berg A, Danielsson Å, Svensson BH (2013) Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant Soil 362:271–278CrossRefGoogle Scholar
  4. Bothe H, Distler E, Eisbrenner G (1978) Hydrogen metabolism in blue-green algae. Biochime 60:277–289CrossRefGoogle Scholar
  5. Buckley DH, Baumgartner LK, Visscher PT (2008) Vertical distribution of methane metabolism in microbial mats of the Great Sippewisset Salt Marsh. Environ Microbiol 10:967–977CrossRefGoogle Scholar
  6. Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, Hoboken, pp 39–58Google Scholar
  7. Conrad R (2007) Microbial ecology of methanogens and methanotrophs. In: Sparks DL (ed) Advances in agronomy. Academic Press, pp 1–63Google Scholar
  8. Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Fact 4:36CrossRefGoogle Scholar
  9. Ejlertsson J, Houwen FP, Svensson BH (1996) Degradation of PAE in MSW under methanogenic conditions and evaluation of a spectrofotometric method for PAE analysis. Swed J Agric Res 26:53–59Google Scholar
  10. Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of Rice Cluster I archaea—the key methane producers in the rice rhizosphere. Science 313:370–372CrossRefGoogle Scholar
  11. Fetzer S, Conrad R (1993) Effext of redox potential on methanogenesis by Methanosarcina barkeri. Arch Microbiol 160:108–113CrossRefGoogle Scholar
  12. Granhall U, Selander H (1973) Nitrogen fixation in a subarctic mire. Oikos 24:8–15CrossRefGoogle Scholar
  13. Granhall U, von Hofsten A (1976) Nitrogenase activity in relation to intracellular organisms in Sphagnum mosses. Physiol Plant 36:88–94CrossRefGoogle Scholar
  14. Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. Proc Natl Acad Sci USA 108:19657–19661CrossRefGoogle Scholar
  15. Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167Google Scholar
  16. Han T-W, Eley JH (1973) Glycolate excretion by Anacystis nidulans: effect of HCO3 concentration, oxygen concentration and light intensity. Plant Cell Physiol 14:285–291Google Scholar
  17. Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early Earth. Nature 412:324–327CrossRefGoogle Scholar
  18. Hoehler TM, Albert DB, Alperin MJ, Bebout BM, Martens CS, Des Marais DJ (2002) Comparative ecology of H2 cycling in sedimentary and phototrophic ecosystems. Antonie Van Leeuwenhoek 81:575–585CrossRefGoogle Scholar
  19. Karlsson A, Ejlertsson J, Nezirevic D, Svensson BH (1999) Degradation of phenol under meso- and thermophilic, anaerobic conditions. Anaerobe 5:25–35CrossRefGoogle Scholar
  20. Lear G, Anderson MJ, Smith JP, Boxen K, Lewis GD (2008) Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms. FEMS Microbiol Ecol 65:463–473CrossRefGoogle Scholar
  21. Limpricht KG (1890) Die Laubmosse. In: Rabenhorst DL (ed) Kryptogamen-Flora von Deutschland, Oesterrieich und der Schweiz. Kummer, LeipzigGoogle Scholar
  22. Lindberg P, Shütz K, Happe T, Lindblad P (2002) A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133. Int J Hydrogen Energy 27:1291–1296CrossRefGoogle Scholar
  23. Lindberg P, Lindblad F, Cournac L (2004) Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and its hydrogenase-deficient mutant strain NHM5. Appl Environ Microbiol 70:2137–2145CrossRefGoogle Scholar
  24. Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767CrossRefGoogle Scholar
  25. Öquist MG, Svensson BH (2002) Vascular plants as regulators of methane emissions from a subarctic mire ecosystem. J Geophys Res 107:4580–4589CrossRefGoogle Scholar
  26. Oremland RS, Taylor BF (1975) Inhibition of methanogenesis in marine sediments by acetylene and ethylene: validity of the acetylene reduction assay for anaerobic microcosms. Appl Microbiol 30:707–709Google Scholar
  27. Patel GB, Roth LA, Agnew BJ (1984) Death rates of obligate anaerobes exposed to oxygen and the effect of media prereduction on cell viability. Can J Microbiol 30:228–235CrossRefGoogle Scholar
  28. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stainer R (1979) Generic assignment, strain histories and propoerties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61CrossRefGoogle Scholar
  29. Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280Google Scholar
  30. Sonesson M (1973) Studies in production and turnover of bryophytes at Stordalen 1972. In: Sonesson M (ed) Progress Report 1972. IBP Swedih Tundra Biome Project Technical Report, vol 14. Swedish Natural Science Research Council, Lund, pp 66–75Google Scholar
  31. Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211CrossRefGoogle Scholar
  32. Stewart WDP, Fitzgerald GP, Burris RH (1967) In situ studies on nitrogen fixation using acetylene-reduction technique. Proc Natl Acad Sci USA 58:2071–2078CrossRefGoogle Scholar
  33. Svensson BH (1983) Carbon fluxes from acid peat of a subarctic mire with emphasis on methane. Thesis, Swedish University of Agriculture, UppsalaGoogle Scholar
  34. Svensson BH (1986) Methane as part of the carbon mineralization in an acid tundra mire. In: Megusar F, Gantar M (eds) Slovene Society for Microbiology, Ljubljana, pp 611–616Google Scholar
  35. Svensson BH, Rosswall T (1984) In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43:341–350CrossRefGoogle Scholar
  36. Svensson BH, Christensen TR, Johansson E, Öquist MG (1999) Interdecadal changes in CO2 and CH4 fluxes of a subarctic mire: Stordalen revisited after 20 years. Oikos 85:22–30CrossRefGoogle Scholar
  37. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20CrossRefGoogle Scholar
  38. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris D, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720CrossRefGoogle Scholar
  39. Tayasu I (1998) Use of carbon and nitrogen isotope ratios in termite research. Ecol Res 13:377–387CrossRefGoogle Scholar
  40. Troshina O, Serebryakova L, Sheremetieva M, Lindblad P (2002) Production of H2 by the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 during fermentation. Int J Hydrogen Energy 27:1283–1289CrossRefGoogle Scholar
  41. Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer: 15 years later. ASM News 48:561–565Google Scholar
  42. Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterisation of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11CrossRefGoogle Scholar
  43. Zinder SH (1993) Pysiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 128–206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andreas Berg
    • 1
    Email author
  • Peter Lindblad
    • 2
  • Bo Håkan Svensson
    • 1
  1. 1.Department of Water and Environmental StudiesUniversity of LinköpingLinköpingSweden
  2. 2.Microbial Chemistry, Department of Chemistry, Ångström LaboratoryUppsala UniversityUppsalaSweden

Personalised recommendations