Advertisement

Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential

  • Marlene Henríquez
  • Karen Vergara
  • Javiera Norambuena
  • Andrea Beiza
  • Felipe Maza
  • Pamela Ubilla
  • Ivanna Araya
  • Renato Chávez
  • Aurelio San-Martín
  • José Darias
  • María J. Darias
  • Inmaculada VacaEmail author
Original Paper

Abstract

The diversity of sponge-associated fungi has been poorly investigated in remote geographical areas like Antarctica. In this study, 101 phenotypically different fungal isolates were obtained from 11 sponge samples collected in King George Island, Antarctica. The analysis of ITS sequences revealed that they belong to the phylum Ascomycota. Sixty-five isolates belong to the genera Geomyces, Penicillium, Epicoccum, Pseudeurotium, Thelebolus, Cladosporium, Aspergillus, Aureobasidium, Phoma, and Trichocladium but 36 isolates could not be identified at genus level. In order to estimate the potential of these isolates as producers of interesting bioactivities, antimicrobial, antitumoral and antioxidant activities of fungal culture extracts were assayed. Around 51 % of the extracts, mainly from the genus Geomyces and non identified relatives, showed antimicrobial activity against some of the bacteria tested. On the other hand, around 42 % of the extracts showed potent antitumoral activity, Geomyces sp. having the best performance. Finally, the potential of the isolated fungi as producers of antioxidant activity seems to be moderate. Our results suggest that fungi associated with Antarctic sponges, particularly Geomyces, would be valuable sources of antimicrobial and antitumoral compounds. To our knowledge, this is the first report describing the biodiversity and the metabolic potential of fungi associated with Antarctic marine sponges.

Keywords

Antarctic sponges Fungi Geomyces sp. Antimicrobial Antitumoral Antioxidant 

Notes

Acknowledgments

We thank Antarctic collaborator Carol San Martín, and all the team of Professor Julio Escudero Base in Antarctica for allowing us to use their accommodations and laboratory facilities. We also thank to Mitzy Vega and Patricio Romero for lab assistance. This work was supported by FONDECYT grant 11090192, Instituto Antártico Chileno (INACH) and “Programa Bicentenario de Ciencia y Tecnología” (Chile) project PDA13.

References

  1. Avila C, Taboada S, Núñez-Pons L (2007) Antarctic marine chemical ecology: what is next? Mar Ecol 29:1–71CrossRefGoogle Scholar
  2. Baker PW, Kennedy J, Dobson ADW, Marchesi JR (2009) Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol 11:540–547Google Scholar
  3. Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JT, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227CrossRefGoogle Scholar
  4. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86CrossRefGoogle Scholar
  5. Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74CrossRefGoogle Scholar
  6. Bridge PD, Spooner BM, Roberts PJ (2009). List of non-lichenized fungi from the Antarctic region. www.antarctica.ac.uk/bas_research/data/access/fungi/
  7. Brunati M, Rojas JL, Sponga F, Ciciliato I, Losi D, Göttlich E, de Hoog S, Genilloud O, Marinelli F (2009) Diversity and pharmaceutical screening of fungi from benthic mats of Antarctic lakes. Mar Genomics 2: 43–50Google Scholar
  8. Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163CrossRefGoogle Scholar
  9. Coker PS, Radecke J, Guy C, Camper ND (2003) Potato disc tumor induction assay: a multiple mode of drug action assay. Phytomed 10:133–138Google Scholar
  10. de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76Google Scholar
  11. Ding B, Yin Y, Zhang F, Li Z (2011) Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol 13:713–721CrossRefGoogle Scholar
  12. Frisvad JC, Samson RA (2004) Polyphasic taxonomy of Penicillium subgenus Penicillium: A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol 49:1–174Google Scholar
  13. Gao Q, Yang ZL (2010) Ectomycorrhizal fungi associated with two species of Kobresia in an alpine meadow in the eastern Himalaya. Mycorrhiza 20:281–287Google Scholar
  14. Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101CrossRefGoogle Scholar
  15. Gargas A, Trest MT, Christensen M, Volk TJ, Blehert DS (2009) Geomyces destructans sp.nov. associated with bat white-nose syndrome. Mycotaxon 108:147–154CrossRefGoogle Scholar
  16. Grasso S, Bruni V, Maio G (1997) Marine fungi in Terra Nova Bay (Ross Sea, Antarctica). New Microbiol 20:371–376Google Scholar
  17. Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177CrossRefGoogle Scholar
  18. Kochkina GA, Ivanushkina NE, Akimov VN, Gilichinskiĭ DA, Ozerskaia SM (2007) Halo- and psychrotolerant Geomyces fungi from arctic cryopegs and marine deposits. Mikrobiologiia 76:39–47Google Scholar
  19. Lee Y-M, Li H, Hong J, Cho H-Y, Bae K-S, Kim M-A, Kim D-K, Jung J-H (2010) Bioactive metabolites from the sponge-derived fungus Aspergillus versicolor. Arch Pharm Res 33:231–235Google Scholar
  20. Li Q, Wang G (2009) Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res 164:233–241CrossRefGoogle Scholar
  21. Li Y, Sun B, Liu S, Jiang L, Liu X, Zhang H, Che Y (2008) Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. J Nat Prod 71:1643–1646CrossRefGoogle Scholar
  22. Liu Y, Nair MG (2010) An efficient and economical MTT essay for determining the antioxidant activity of plant natural product extracts and pure compounds. J Nat Prod 73:1193–1195Google Scholar
  23. Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Div 42:1–15Google Scholar
  24. Loque CP, Medeiros AO, Pellizzari FM, Oliveira EC, Rosa CA, Rosa LH (2010) Fungal community associated with marine macroalgae from Antarctica. Polar Biol 33:641–648Google Scholar
  25. McLaughlin JL, Rogers LL (1998) The use of biological assays to evaluate botanicals. Drug Inform J 32:513–524Google Scholar
  26. Menezes CBA, Bonugli-Santos RC, Miqueletto PB, Passarini MRZ, Silva CHD, Justo MR, Leal RR, Fantinatti-Garboggini F, Oliveira VM, Berlinck RGS, Sette LD (2010) Microbial diversity associated with algae, ascidians and sponges from the north coast of Sao Paulo state, Brazil. Microbiol Res 165:466–482Google Scholar
  27. Montemartini Corte A, Liotta M, Venturi CB, Calegari L (2000) Antibacterial activity of Penicillium spp. strains isolated in extreme environments. Polar Biol 23:294–297Google Scholar
  28. Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674CrossRefGoogle Scholar
  29. Muraina IA, Suleimanb MM, Eloffb JN (2009) Can MTT be used to quantify the antioxidant activity of plant extracts? Phytomed 16:665–668CrossRefGoogle Scholar
  30. Nano GM, Binello A, Bianco M.A, Ugazio G, Burdino S (2002) In vitro tests to evaluate potential biological activity in natural substances. Fitoterapia 73:140–146Google Scholar
  31. Navarrete K, Roa A, Vaca I, Espinosa Y, Navarro C, Chávez R (2009) Molecular characterization of the niaD and pyrG genes from Penicillium camemberti, and their use as transformation markers. Cell Mol Biol Lett 14:692–702CrossRefGoogle Scholar
  32. Papagianni M, Ambrosiadis I, Filiousis G (2007) Mould growth on traditional Greek sausages and penicillin production by Penicillium isolates. Meat Sci 76:653–657CrossRefGoogle Scholar
  33. Parish CA, de la Cruz M, Smith SK, Zink D, Baxter J, Tucker-Samaras S, Collado J, Platas G, Bills G, Díez MT, Vicente F, Peláez F, Wilson K (2009) Antisense-guided isolation and structure elucidation of pannomycin, a substituted cis-decalin from Geomyces pannorum. J Nat Prod 72:59–62CrossRefGoogle Scholar
  34. Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, Carmeli S, Ilan M, Yarden O (2010) Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Div 42:17–26Google Scholar
  35. Pivkin MV, Aleshko SA, Krasokhin VB, Khudyakova YV (2006) Fungal assemblages associated with sponges of the southern coast of Sakhalin Island. Russian J Mar Biol 32:207–213CrossRefGoogle Scholar
  36. Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Div 31:19–35Google Scholar
  37. Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar Biol 136:969–977Google Scholar
  38. Sun HH, Mao W-J, Jiao J-Y, Xu J-C, Li H-Y, Chen Y, Qi X-H, Chen Y-L, Xu J, Zhao C-Q, Hou Y-J, Yang Y-P (2011) Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar Biotechnol 13:1048–1055CrossRefGoogle Scholar
  39. Teles HL, Silva GH, Castro-Gamboa I, da Silva Bolzani V, Pereira JO, Costa-Neto CM, Haddad R, Eberlin MN, Young MC, Araújo AR (2005) Benzopyrans from Curvularia sp., an endophytic fungus associated with Ocotea corymbosa (Lauraceae). Phytochem 66:2363–2367CrossRefGoogle Scholar
  40. Thirunavukkarasu N, Suryanarayanan TS, Girivasan KP, Venkatachalam A, Geetha V, Ravishankar JP, Doble M (2012) Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Div 55:37–46CrossRefGoogle Scholar
  41. Thomas TRA, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association-a review. Mar Drugs 8:1417–1468CrossRefGoogle Scholar
  42. Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551CrossRefGoogle Scholar
  43. Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174CrossRefGoogle Scholar
  44. Webster NS, Negri AP, Munro MMHG, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300Google Scholar
  45. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic Press Inc, San Diego, pp 315–322Google Scholar
  46. Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585CrossRefGoogle Scholar
  47. Zhou K, Zhang X, Zhang F, Li Z (2011) Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the south China Sea sponges. Microb Ecol 62:644–654CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Marlene Henríquez
    • 1
  • Karen Vergara
    • 1
  • Javiera Norambuena
    • 1
  • Andrea Beiza
    • 1
  • Felipe Maza
    • 1
  • Pamela Ubilla
    • 2
  • Ivanna Araya
    • 1
  • Renato Chávez
    • 2
  • Aurelio San-Martín
    • 1
  • José Darias
    • 3
  • María J. Darias
    • 5
    • 4
  • Inmaculada Vaca
    • 1
    Email author
  1. 1.Departamento de Química, Facultad de CienciasUniversidad de ChileÑuñoaChile
  2. 2.Departamento de Biología, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH)Estación CentralChile
  3. 3.Instituto de Productos Naturales y Agrobiología (CSIC)La LagunaSpain
  4. 4.IRD, UMR226-I-SEM (Institut de Sciences de l’Evolution de Montpellier)Montpellier Cedex 5France
  5. 5.IRTA Sant Carles de la RàpitaSpain

Personalised recommendations