World Journal of Microbiology and Biotechnology

, Volume 29, Issue 12, pp 2373–2378 | Cite as

Sodium houttuyfonate, a potential phytoanticipin derivative of antibacterial agent, inhibits bacterial attachment and pyocyanine secretion of Pseudomonas aeruginosa by attenuating flagella-mediated swimming motility

  • Jing Shao
  • Huijuan ChengEmail author
  • Changzhong Wang
  • Daqiang Wu
  • Xiaoli Zhu
  • Lingling Zhu
  • Zhenxin Sun
Original Paper


Pseudomonas aeruginosa is a well-known clinical pathogen for its recalcitrant infection caused by biofilm formation which are initiated by flagella-mediated attachment. Sodium houttuyfonate (SH) is a natural phytoanticipin derivative of houttuynin and has anti-pathogenic effect on P. aeruginosa biofilm formation. In this paper, when using 1/2 × MIC SH, the diameter of P. aeruginosa swimming motility was sharply shortened to 36 % in 24 h incubation, and the fold changes of fliC required for swimming motility was 0.36 in 24 h cultivation, the adherence inhibition accounted for about 46 %, and the pyocyanin production decreased to 47 % after 1-day treatment and 56 % after 3-day treatment with obvious visual changes from dark green to light green, compared with the negative control. With the help of mass spectra and scanning electronic microscope, 1/2 × MIC SH was further testified to be enough to eradicate flagella and inhibit pyocyanin secretion of P. aeruginosa. The results do not only re-affirm the close interplay of attachment and virulence (i.e. swimming motility and pyocyanin), but also unravel the potential mechanism of SH on anti-biofilm of P. aeruginosa.


Pseudomonas aeruginosa Attachment Sodium houttuyfonate Swimming motility Pyocyanin 



Sodium houttuyfonate


Mass spectrum


Scanning electronic microscope




Minimal inhitory concentration


Phosphate buffer saline


Standard deviation



This work was supported by the National Natural Science Foundation of China (No. 81173629).

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11274_2013_1405_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 61 kb)


  1. Gao JP, Chen CX, Wang Y, Lu J, Gu WL (2009) Effect of sodium houttuyfonate on myocardial hypertrophy in mice and rats. J Pharm Pharmacol 61(5):677–683. doi: 10.1211/jpp/61.05.0018 CrossRefGoogle Scholar
  2. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36(4):478–503Google Scholar
  3. Kosuge T (1952) Structure of an antimicrobial substance isolated from Houttuynia cordata Thunb. J Pharm Sac Japan 72(3):12271–12275Google Scholar
  4. Lau GW, Hassett DJ, Ran H, Kong F (2004a) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10(12):599–606. doi: 10.1016/j.molmed.2004.10.002 CrossRefGoogle Scholar
  5. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D (2004b) Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 72(7):4275–4278. doi: 10.1128/IAI.72.7.4275-4278.2004 CrossRefGoogle Scholar
  6. Lindhout T, Lau PC, Brewer D, Lam JS (2009) Truncation in the core oligosaccharide of lipopolysaccharide affects flagella-mediated motility in Pseudomonas aeruginosa PAO1 via modulation of cell surface attachment. Microbiology 155(10):3449–3460. doi: 10.1099/mic.0.030510-0 CrossRefGoogle Scholar
  7. Liu G, Xiang H, Tang X, Zhang K, Wu X, Wang X, Guo N, Feng H, Wang G, Liu L, Shi Q, Shen F, Xing M, Yuan P, Liu M, Yu L (2011) Transcriptional and functional analysis shows sodium houttuyfonate-mediated inhibition of autolysis in Staphylococcus aureus. Molecules 16(10):8848–8865. doi: 10.3390/molecules16108848 CrossRefGoogle Scholar
  8. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefGoogle Scholar
  9. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36(4):893–916. doi: 10.1111/j.1574-6976.2011.00322.x CrossRefGoogle Scholar
  10. Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA (2013) Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines. mBio 4(1). doi: 10.1128/mBio.00526-12
  11. Murray TS, Kazmierczak BI (2006) FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J Bacteriol 188(19):6995–7004. doi: 10.1128/JB.00790-06 CrossRefGoogle Scholar
  12. Murray TS, Kazmierczak BI (2008) Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 190(8):2700–2708. doi: 10.1128/JB.01620-07 CrossRefGoogle Scholar
  13. Norman RS, Moeller P, McDonald TJ, Morris PJ (2004) Effect of pyocyanin on a crude-oil-degrading microbial community. Appl Environ Microbiol 70(7):4004–4011. doi: 10.1128/AEM.70.7.4004-4011.2004 CrossRefGoogle Scholar
  14. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304. doi: 10.1046/j.1365-2958.1998.01062.x CrossRefGoogle Scholar
  15. Pompilio A, Crocetta V, Confalone P, Nicoletti M, Petrucca A, Guarnieri S, Fiscarelli E, Savini V, Piccolomini R, Di Bonaventura G (2010) Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol 10(1):102CrossRefGoogle Scholar
  16. Rashid MH, Kornberg A (2000) Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97(9):4885–4890. doi: 10.1073/pnas.060030097 CrossRefGoogle Scholar
  17. Reimer Å (2000) Concentrations of the Pseudomonas aeruginosa toxin pyocyanin in human ear secretions. Acta Otolaryngol (Stockh) 120(543):86–88. doi: 10.1080/000164800454062 CrossRefGoogle Scholar
  18. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154. doi: 10.1128/jb.184.4.1140-1154.2002 CrossRefGoogle Scholar
  19. Shao J, Cheng HJ, Wang CZ, Wang Y (2012) A phytoanticipin derivative, sodium houttuyfonate, induces in vitro synergistic effects with levofloxacin against biofilm formation by Pseudomonas aeruginosa. Molecules 17(9):11242–11254. doi: 10.3390/molecules170911242 CrossRefGoogle Scholar
  20. Wang HZ, Wu H, Ciofu O, Song Z, Hoiby N (2012) In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 56(5):2683–2690. doi: 10.1128/AAC.06486-11 CrossRefGoogle Scholar
  21. Ye X, Li X, Yuan L, Ge L, Zhang B, Zhou S (2007) Interaction of houttuyfonate homologues with the cell membrane of gram-positive and gram-negative bacteria. Colloids Surf A 301(1–3):412–418. doi: 10.1016/j.colsurfa.2007.01.012 CrossRefGoogle Scholar
  22. Zeng X, Liu X, Bian J, Pei G, Dai H, Polyak SW, Song F, Ma L, Wang Y, Zhang L (2011) Synergistic effect of 14-alpha-lipoyl andrographolide and various antibiotics on the formation of biofilms and production of exopolysaccharide and pyocyanin by Pseudomonas aeruginosa. Antimicrob Agents Chemother 55(6):3015–3017. doi: 10.1128/AAC.00575-10 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jing Shao
    • 1
  • Huijuan Cheng
    • 1
    Email author
  • Changzhong Wang
    • 1
  • Daqiang Wu
    • 1
  • Xiaoli Zhu
    • 1
  • Lingling Zhu
    • 1
  • Zhenxin Sun
    • 1
  1. 1.Laboratory of Microbiology and Immunology, School of Chinese and Western Integrative MedicineAnhui University of Chinese MedicineHefeiChina

Personalised recommendations