Advertisement

World Journal of Microbiology and Biotechnology

, Volume 29, Issue 11, pp 2095–2103 | Cite as

Characterization and constitutive expression of an acidic mesophilic endo-1,4-β-d-xylanohydrolase with high thermotolerance and catalytic efficiency in Pichia pastoris

  • Ning Guo
  • Jia Zheng
  • Jian Tian
  • Lishuang Wu
  • Hongbo Zhou
Original Paper

Abstract

A putative endo-1,4-β-d-xylanohydrolase gene xyl11 from Aspergillus niger, encoding a 188-residue xylanase of glycosyl hydrolase family 11, was constitutively expressed in Pichia pastoris. The recombinant Xyl11 exhibited optimal activity at pH 5.0 and 50 °C, and displayed more than 68 % of the maximum activity over the temperature range 35–65 °C and 33 % over the pH range 2.2–7.0. It maintained more than 40 % of the original activity after incubation at 90 °C (pH 5.0) for 10 min and more than 75 % of the original activity after incubation at pH 2.2–11.0 (room temperature) for 2 h. The specific activity, K m and V max of purified Xyl11 were 22,253 U mg−1, 6.57 mg ml−1 and 51,546.4 μmol min−1 mg−1. It could degrade xylan to a series of xylooligosaccharides and no xylose was detected. The recombinant enzyme with high stability and catalytic efficiency could work over wide ranges of pH and temperature and thus has the potential for various industrial applications.

Keywords

Endo-1,4-β-d-xylanohydrolase De novo synthesis Aspergillusniger Pichia pastoris Constitutive expression 

Notes

Acknowledgments

This work was financially supported by Genencor Innovation Grant.

Supplementary material

11274_2013_1374_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. Ahlawat S, Battan B, Dhiman SS, Sharma J, Mandhan RP (2007) Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp. J Ind Microbiol Biotechnol 34(12):763–770CrossRefGoogle Scholar
  2. Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84(1):19–35CrossRefGoogle Scholar
  3. Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B (2010) A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 37(2):187–194CrossRefGoogle Scholar
  4. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270CrossRefGoogle Scholar
  5. Canakcı S, Cevher Z, Inan K, Tokgoz M, Bahar F, Kacagan M, Sal FA, Belduz AO (2012) Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71. World J Microbiol Biotechnol 28(5):1981–1988CrossRefGoogle Scholar
  6. Cao Y, Qiao J, Li Y, Lu W (2007) De novo synthesis, constitutive expression of Aspergillus sulphureus β-xylanase gene in Pichia pastoris and partial enzymic characterization. Appl Microbiol Biotechnol 76(3):579–585CrossRefGoogle Scholar
  7. Cavka A, Alriksson B, Rose SH, van Zyl WH, Jönsson LJ (2011) Biorefining of wood: combined production of ethanol and xylanase from waste fiber sludge. J Ind Microbiol Biotechnol 38(8):891–899CrossRefGoogle Scholar
  8. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23CrossRefGoogle Scholar
  9. Cristobal S, Zemla A, Fischer D, Rychlewski L, Elofsson A (2001) A study of quality measures for protein threading models. BMC Bioinforma 2(1):5CrossRefGoogle Scholar
  10. de Carvalho Peixoto-Nogueira S, Michelin M, Betini JHA, Jorge JA, Terenzi HF, de Lourdes Teixeira de Moraes Polizeli M (2009) Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J Ind Microbiol Biotechnol 36(1):149–155CrossRefGoogle Scholar
  11. Giridhar PV, Chandra T (2010) Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem 45(10):1730–1737CrossRefGoogle Scholar
  12. Kui H, Luo H, Shi P, Bai Y, Yuan T, Wang Y, Yang P, Dong S, Yao B (2010) Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl Biochem Biotechnol 162(4):953–965CrossRefGoogle Scholar
  13. Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B (2009a) A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 13(5):849–857CrossRefGoogle Scholar
  14. Luo H, Wang Y, Li J, Yang J, Yang Y, Huang H, Fan Y, Yao B (2009b) Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Technol 45(2):126–133CrossRefGoogle Scholar
  15. Masui DC, Zimbardi ALRL, Souza FHM, Guimarães LHS, Furriel RPM, Jorge JA (2012) Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J Microbiol Biotechnol 28(8):2689–2701CrossRefGoogle Scholar
  16. Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol 37(1):71–83CrossRefGoogle Scholar
  17. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25(2):221–231CrossRefGoogle Scholar
  18. Prakash P, Jayalakshmi S, Prakash B, Rubul M, Sreeramulu K (2012) Production of alkaliphilic, halotolerent, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste: single step purification and characterization. World J Microbiol Biotechnol 28(1):183–192CrossRefGoogle Scholar
  19. Saleem M, Aslam F, Akhtar MS, Tariq M, Rajoka MI (2012) Characterization of a thermostable and alkaline xylanase from Bacillus sp. and its bleaching impact on wheat straw pulp. World J Microbiol Biotechnol 28(2):513–522CrossRefGoogle Scholar
  20. Sandhu G, Aleff R, Kline B (1992) Dual asymmetric PCR: one-step construction of synthetic genes. Biotechniques 12(1):14–16Google Scholar
  21. Schägger H (2006) Tricine-SDS-PAGE. Nature Protoc 1(1):16–22CrossRefGoogle Scholar
  22. Simpson HD, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277(Pt 2):413–417Google Scholar
  23. Teixeira RSS, Siqueira FG, Souza MV, Filho EXF, Bon EPS (2010) Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori. J Ind Microbiol Biotechnol 37(10):1041–1051CrossRefGoogle Scholar
  24. Uhl AM, Daniel RM (1999) The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1. Extremophiles 3(4):263–267CrossRefGoogle Scholar
  25. Zhang M, Jiang Z, Yang S, Hua C, Li L (2010) Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresour Technol 101(2):688–695CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ning Guo
    • 1
  • Jia Zheng
    • 1
  • Jian Tian
    • 1
  • Lishuang Wu
    • 1
  • Hongbo Zhou
    • 1
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Biometallurgy, Ministry of EducationCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations