Skip to main content
Log in

Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We evaluated response differences of normal and transformed (so-called ‘hairy’) roots of soybean (Glycine max L. (Merr.), cv L17) to the Nod-factor inducing isoflavone genistein and salinity by quantifying growth, nodulation, nitrogen fixation and biochemical changes. Composite soybean plants were generated using Agrobacterium rhizogenes-mediated transformation of non-nodulating mutant nod139 (GmNFR5α minus) with complementing A. rhizogenes K599 carrying the wild-type GmNFR5α gene under control of the constitutive CaMV 35S promoter. We used genetic complementation for nodulation ability as only nodulated roots were scored. After hairy root emergence, primary roots were removed and composite plants were inoculated with Bradyrhizobium japonicum (strain CB1809) pre-induced with 10 μM genistein and watered with NaCl (0, 25, 50 and 100 mM). There were significant differences between hairy roots and natural roots in their responses to salt stress and genistein application. In addition, there were noticeable nodulation and nitrogen fixation differences. Composite plants had better growth, more root volume and chlorophyll as well as more nodules and higher nitrogenase activity (acetylene reduction) compared with natural roots. Decreased lipid peroxidation, proline accumulation and catalase/peroxidase activities were found in ‘hairy’ roots under salinity stress. Genistein significantly increased nodulation and nitrogen fixation and improved roots and shoot growth. Although genistein alleviated lipid peroxidation under salinity stress, it had no significant effect on the activity of antioxidant enzymes. In general, composite plants were more competitive in growth, nodulation and nitrogen fixation than normal non-transgenic even under salinity stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Khanjari S, Al-Kathiri A, Esechie HA (2002) Variation in chlorophyll meter readings, nodulation and dry matter yields of alfalfa (Medicago sativa L.) cultivars differing in salt tolerance. Crop Res 24:350–356

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphennol oxidase in Beta vulgaris. Plant Physiol 24:1–150

    Article  CAS  Google Scholar 

  • Bandyopadhyay AK, Jain V, Nainawate HS (1996) Nitrate alters the flavonoid profile and nodulation in pea (Pisum sativum L.). Biol Fertil Soils 21:189–192

    Article  CAS  Google Scholar 

  • Bates LS, Waldern RP, Teave ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beach KH, Gresshoff PM (1988) Characterization and culture of Agrobacterium rhizogenes Transformed roots of forage legumes. Plant Sci 57:73–81

    Article  CAS  Google Scholar 

  • Berkelaar E, Beverley H (2000) The relationship between morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Can J Bot 78:381–387

    CAS  Google Scholar 

  • Bor M, Ozdemir F, Turkan I (2003) The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant Sci 164:77–84

    Article  CAS  Google Scholar 

  • Bradford MA (1976) Rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Annu Rev Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Broughton WJ, Dilworth M (1971) Control of leg-haemoglobin synthesis in snake beans. Biochem J 125:1075–1080

    Article  CAS  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1991) Genetic control of nodulation. Annu Rev Microbiol 45:345–382

    Article  Google Scholar 

  • Cakmak I, Horst W (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tip of soybean (Glysin max). Plant Physiol 83:463–468

    Article  CAS  Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two green house pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86:247–260

    Article  CAS  Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. J Plant Physiol 87:547–550

    Article  CAS  Google Scholar 

  • Day DA, Lambers H, Bateman J, Carroll BJ, Gresshoff PM (1986) Growth comparisons of a super nodulating soybean (Glycine max) mutant and its wild-type parent. Physiol Plant 68:375–382

    Article  Google Scholar 

  • De Vos C, Schat HM, De Waal MA, Vooijs R, Ernst W (1991) Increased to copper-induced damage of the root plasma membrane in copper tolerant Silenecucubalus. Plant Physiol 82:523–528

    Article  Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effect of salt stress on growth and nitrogen fixation by pea, faba bean, common bean and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • El-Hamdaoui A, Redondo-Nieto M, Rivilla R, Bonilla I, Bolaños L (2003) Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum–pea (Pisum sativum) symbiosis and nodule development under salt stress. Plant, Cell Environ 26:1003–1012

    Article  CAS  Google Scholar 

  • Ferguson BJ, Gresshoff PM (2009) Soybean as a model legume. Grain Leg 53:7

    Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE et al (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  CAS  Google Scholar 

  • Ferri A, Lluch C, Ocana A (2000) Effect of salt stress on carbon metabolism and bacteroid respiration in root nodules of common bean (Phaseolus vulgaris L.). Plant Biol 2:396–402

    Article  CAS  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium-plant signal exchange. Nature 357:655–660

    Article  CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photo-oxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Georgiev GI, Atkias CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255

    Google Scholar 

  • Ghanati F, Morita A, Yokota H (2002) Induction of suberin and increase of lignin content by excess boron in tobacco cell. Soil Sci Plant Nutr 48:357–364

    Article  CAS  Google Scholar 

  • Giannopolitis C, Ries S (1977) Superoxide dismutase occurrence in higher plant. Plant Physiol 59:309–314

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  Google Scholar 

  • Han L, Gresshoff PM, Hanan J (2011) Technical article: part of a special issue on growth and architectural modelling. Ann Bot 107:855–863

    Article  CAS  Google Scholar 

  • Hawkins HJ, Lewis OAM (1993) Combination effect of NaCl salinity, nitrogen form and calcium concentration on the growth, ionic content and gaseous exchange properties of Triticumaestivum L.cv. Gamtoos. New Phytol 124:161–170

    Article  CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Ros-Barcelo A, Sevilla F (2001) Antioxidant systems and O2–H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl induced necrotic lesions in minor veins. Plant Physiol 27:817–831

    Article  Google Scholar 

  • Hong ZL, Lakkineni K, Zhang ZM, Verma DPS (2000) Removal of feedback inhibition of DELTA-1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  CAS  Google Scholar 

  • Ikeda JI, Kobayashi M, Takahashi E (1992) Salt stress increases the respiratory cost of nitrogen fixation. Soil Sci Plant Nutr 38:51–56

    Article  CAS  Google Scholar 

  • Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen CD et al (2010) Inactivation of duplicated Nod Factor Receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allo-tetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol 51:201–214

    Article  CAS  Google Scholar 

  • Indrasumunar A, Searle I, Lin M, Kereszt A, Men A, Carroll BJ, Gresshoff PM (2011) Limitation of nodule organ number by nodulation factor receptor kinase 1a transcription in soybean (Glycine max L. Merr.). Plant J 65:39–50

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and feedstock in a bio-based economy—a review. Agron Sustain Dev 32:329–364

    Google Scholar 

  • Kereszt A, Li D, Indrasumunar A, Nguyen CDT, Nontachaiyapoom S, Kinkema M et al (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948–952

    Article  CAS  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) Effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kondorosi A (1992) Regulation of nodulation genes in rhizobia. In: Verma DPS (ed) Molecular signals in plant-microbe communication. CRC Press, Boca Raton, pp 325–340

    Google Scholar 

  • Kosslak RM, Rookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proceedings of the National Academy of Sciences of USA 34:7428–7432

    Article  Google Scholar 

  • Kosslak RM, Joshi RS, Bowen BA, Paiaren HE, Appelbaum ER (1990) Strain-specific inhibition of nod gene induction in Bradyrhizobium japonicum by flavonoid compounds. App Environ Microbiol 56:1333–1341

    CAS  Google Scholar 

  • Kraus GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basis. Ann Rev Plant Physiol 136:472–479

    Google Scholar 

  • Layzell DB, Hunt S (1990) Oxygen and the regulation of nitrogen fixation in legume nodules. Physiol Plant 80:322–327

    Article  CAS  Google Scholar 

  • Lee WK, Jeong N, Indrasumunar A, Gresshoff PM, Jeong S (2011) Glycine max non-nodulation locus rj1: a recombinogenic region encompassing a SNP in a lysine motif receptor-like kinase (GmNFR1a). Theor Appl Genet 122:875–884

    Article  Google Scholar 

  • Lérougé P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC et al (1990) Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  Google Scholar 

  • Liu C, Junying ZHU, Li L, Liu Z, Ruichi PAN, Lehong JIN (2002) Exogenous auxin effects on growth and phenotype of normal and hairy roots of Pueraria lobata (Willd.) Ohwi. Plant Growth Regul 38:37–43

    Article  CAS  Google Scholar 

  • Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. PNAS 99:14446–14451

    Article  CAS  Google Scholar 

  • Martirani L, Stiller J, Mirabella R, Alfano F, Lamberte A, Radutoiu SE et al (1999) T-DNA tagging of nodulation- and root-related genes in Lotus japonicus: expression patterns and potential for promoter trapping and insertional mutagenesis. MPMI 12:275–284

    Article  CAS  Google Scholar 

  • Masood A, Shah NA, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla filiculoides). Environ Exp Bot 58:216–222

    Article  CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and ability of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Meneguzzo S, Navari-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155:274–280

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Pan BF, Smith DL (1998) Genistein addition to the rooting medium of soybean at the onset of nitrogen fixation increases nodulation. J Plant Nutr 21:1631–1639

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Mittra B (2003) Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthesis 41:191–200

    Article  CAS  Google Scholar 

  • Passardi F, Cosio C, Penel C, Dunand C (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24:255–265

    Article  CAS  Google Scholar 

  • Perez-Alfocea F, Estan F, Caro M, Balarin MC (1993) Response of tomato cultivars to salinity. Plant Soil 150:203–211

    Article  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  Google Scholar 

  • Radic S, Radic-Stojkovic M, Pevalek-Kozlina B (2006) Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. J Plant Physiol 163:1284–1292

    Article  CAS  Google Scholar 

  • Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation inchickpea (Cicerarietinum). Annu Bot 89:563–570

    Article  CAS  Google Scholar 

  • Reid DE, Brett JF, Gresshoff PM (2011) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. MPMI 24:606–618

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:375–384

    Article  Google Scholar 

  • Ruiz JM, Blasco B, Rivero RM, Romero L (2005) Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity resistant rootstocks of tomato. Physiol Plant 124:465–475

    Article  CAS  Google Scholar 

  • Sanjuan J, Carlson RW, Spaonk HP, Bhat UR, Barbour WM, Glushka J et al (1992) A 2-O- methylfucose moiety is present in the lipo-oliosaccharide nodulation signal of Bradyrhizobium japonicum. Proc Natl Acad Sci USA 89:8789–8793

    Article  CAS  Google Scholar 

  • Serraj R (2002) Response of symbiotic nitrogen fixation to drought and salinity stresses. Physiol Mol Biol 8:77–86

    Google Scholar 

  • Serraj R, Vasquez-Diaz H, Drevon JJ (1998) Effects of salt stress on nitrogen fixation, oxygen diffusion, and ion distribution in soybean, common bean, and alfalfa. J Plant Nutr 21:475–488

    Article  CAS  Google Scholar 

  • Siroka B, Huttova J, Tamas L, Simonoviva M, Mistrik I (2004) Effect of cadmium on hydrolytic enzymes in maize root and coleopptile. Biologia 59:513–517

    CAS  Google Scholar 

  • Soussi M, Lluch C, Ocana A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chickpea (Cicerarietinum L.) cultivars under salt stress. J Exp Bot 50:1701–1708

    Article  CAS  Google Scholar 

  • Spaink HP (1996) Regulation of plant morphogenesis by lipo-chitin oligosaccharides. CRC crit rev plant sci 15:559–582

    CAS  Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54:257–288

    Article  CAS  Google Scholar 

  • Stiller J, Martirani L, Túppale S, Chian R, Chiurazzi M, Gresshoff PM (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357–1365

    Article  CAS  Google Scholar 

  • Strogonove BP, Kabanov VV, Shevajakova NI, Lapine LP, Kamizerko EI, Popov BA et al (1970) Structure and function of plant cells in saline habitats. Wiley, New York

    Google Scholar 

  • Sudhakar C, Ramanjulu S, Reddy PS, Veeranjaneyulu K (1997) Response of some calvin cycle enzymes subjected to salinityshock in vitro. Indian J Exp Bot 35:665–667

    CAS  Google Scholar 

  • Sugiyama A, Shitan N, Kyazaki K (2008) Signalling from soybean roots to Rhizobium. Plant Signal Behav 3:38–40

    Article  Google Scholar 

  • Tewari TN, Singh BB (1991) Stress studies in lentil (Lens esculenta Moench). II. Sodicity-induced changes in chlorophyll, nitrate, nitrite reductase, nucleic acids, proline, yield and yield components in lentil. Plant Soil 135:225–250

    Article  Google Scholar 

  • Tucker M (2004) Primary nutrients and plant growth. In: Scribd (ed) Essential plant nutrients. Department of Agriculture, North Carolina

    Google Scholar 

  • Vessey JK (1994) Measurement of nitrogenase activity in legume root nodules: in defence of the acetylene reduction assay. Plant Soil 158:151–162

    Article  CAS  Google Scholar 

  • Yurekli F, Porgali ZB, Turkan I (2004) Variations in abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin concentrations in two bean species subjected to salt stress. Acta Biol Cracov Bot 2000 46:201–212

    Google Scholar 

  • Zhang F, Smith DL (1996) Genistein accumulation in soybean [Glycine max [L.] Merr.) root systems under suboptimal root zone temperatures. J Exp Bot 47:785–792

    Article  CAS  Google Scholar 

  • Zhang F, Smith DL (1997) Application of genistein to inocula and soil to overcome low spring soil temperature inhibition of soybean nodulation and nitrogen fixation. Plant Soil 192:141–151

    Article  CAS  Google Scholar 

  • Zhang F, Lynch DH, Smith DL (1996) Inoculation of soybean [Glycine max (L.) Merr.] with genistein pre-incubated Bradyrhizobium japonicum or genistein directly applied into soil increases soybean protein and dry matter yield under short season conditions. Plant Soil 179:233–241

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the ARC Centre of Excellence for Integrative Legume Research, University of Queensland for supplying plant and bacterial material. We also acknowledge Dongxue Li and Dr. Arief Indrasumunar for their worthwhile help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ali Mohammad Modarres Sanavy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolatabadian, A., Modarres Sanavy, S.A.M., Ghanati, F. et al. Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. World J Microbiol Biotechnol 29, 1327–1339 (2013). https://doi.org/10.1007/s11274-013-1296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1296-2

Keywords

Navigation