World Journal of Microbiology and Biotechnology

, Volume 28, Issue 12, pp 3311–3321 | Cite as

Influence of choice of yeasts on volatile fermentation-derived compounds, colour and phenolics composition in Cabernet Sauvignon wine

  • Inmaculada Blazquez Rojas
  • Paul A. Smith
  • Eveline J. Bartowsky
Original Paper


Wine colour, phenolics and volatile fermentation-derived composition are the quintessential elements of a red wine. Many viticultural and winemaking factors contribute to wine aroma and colour with choice of yeast strain being a crucial factor. Besides the traditional Saccharomyces species S. cerevisiae, S. bayanus and several Saccharomyces interspecific hybrids are able to ferment grape juice to completion. This study examined the diversity in chemical composition, including phenolics and fermentation-derived volatile compounds, of an Australian Cabernet Sauvignon due to the use of different Saccharomyces strains. Eleven commercially available Saccharomyces strains were used in this study; S. cerevisiae (7), S. bayanus (2) and interspecific Saccharomyces hybrids (2). The eleven Cabernet Sauvignon wines varied greatly in their chemical composition. Nine yeast strains completed alcoholic fermentation in 19 days; S. bayanus AWRI 1375 in 26 days, and S. cerevisiae AWRI 1554 required 32 days. Ethanol concentrations varied in the final wines (12.7–14.2 %). The two S. bayanus strains produced the most distinct wines, with the ability to metabolise malic acid, generate high glycerol concentrations and distinctive phenolic composition. Saccharomyces hybrid AWRI 1501 and S. cerevisiae AWRI 1554 and AWRI 1493 also generated distinctive wines. This work demonstrates that the style of a Cabernet Sauvignon can be clearly modulated by choice of commercially available wine yeast.


Saccharomyces Wine colour Hybrids Volatile compounds Cabernet Sauvignon 


  1. Amerine MA, Ough CS (1980) Methods for analysis of musts and wines. Wiley, New YorkGoogle Scholar
  2. Antoce AO, Namolosanu I (2011) Rapid and precise discrimination of wines by means of an electronic nose based on gas-chromatography. Rev Chim 62(6):593–595Google Scholar
  3. Bartowsky EJ, Dillon SJ, Henschke PA, Markides AJ, Dumont A, Pretorius IS, Oritz-Julien A, Herderich MJ (2004) The potential of Saccharomyces cerevisiae wine yeast to improve red wine colour. Aust NZ Grapegrower Winemaker 490:83–85Google Scholar
  4. Belloch C, Orlic S, Barrio E, Querol A (2008) Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol 122(1–2):188–195. doi:10.1016/j.ijfoodmicro.2007.11.083 CrossRefGoogle Scholar
  5. Bellon J, Rose L, Currie B, Ottawa J, Bell S, Mclean H, Rayment C, Treacher C, Henschke P (2008) Summary from the winemaking with non-conventional yeasts workshops, 13th AWITC. Aust NZ Grapegrower Winemaker 528:72–77Google Scholar
  6. Bellon JR, Eglinton JM, Siebert TE, Pollnitz AP, Rose L, Lopes MD, Chambers PJ (2011) Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines. Appl Microbiol Biotechnol 91(3):603–612CrossRefGoogle Scholar
  7. Benabdeljalil C, Cheynier V, Fulcrand H, Hakiki A, Mosaddak M, Moutounet M (2000) Evidence of new pigments resulting from reaction between anthocyanins and yeast metabolites. Sci Aliments 20:203–220CrossRefGoogle Scholar
  8. Castellari L, Ferruzzi M, Magrini A, Giudici P, Passarelli P, Zambonelli C (1994) Unbalanced wine fermentation by cryotolerant vs non-cryotolerant Saccharomyces strains. Vitis 33(1):49–52Google Scholar
  9. Eglinton J, Fogarty M, McWilliam S, Francis L, Kwiatkowski M, Høj P, Henschke P (2000a) Using Saccharomyces bayanus to modify the chemical and sensory profile of wine. Aust Grapegrower Winemaker 438a:28–32Google Scholar
  10. Eglinton JM, McWilliam SJ, Fogarty MW, Francis IL, Kwiatkowski MJ, Høj PB, Henschke PA (2000b) The effect of Saccharomyces bayanus-mediated fermentation on the chemical composition and aroma profile of Chardonnay wine. Aust J Grape Wine Res 6:190–196CrossRefGoogle Scholar
  11. Eglinton JM, Henschke PA, Høj PB, Pretorius IS (2003) Winemaking properties and potential of Saccharomyces bayanus wine yeast: harnessing the untapped potential of yeast biodiversity. Aust NZ Wine Indust J 18:16–19Google Scholar
  12. Eglinton J, Griesser M, Henschke PA, Kwiatkowski M, Parker M, Herderich MJ (2004) Yeast-mediated formation of pigmented polymers in red wine. In: Waterhouse AL, Kennedy JA (eds) Red wine color: revealing the mysteries. ACS symposium series 886. Oxford University Press, pp 7–21Google Scholar
  13. Fleet GH (1998) The microbiology of alcoholic beverages. In: Wood BJB (ed) Microbiology of fermented foods, vol 1, 2nd edn. Blackie Academic and Professional, London, pp 217–262Google Scholar
  14. Fleet GH, Heard G (1993) Yeasts—growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publisher, Amsterdam, pp 27–54Google Scholar
  15. Francis IL, Newton JL (2005) Determining wine aroma from compositional data. Aust J Grape Wine Res 11(2):114–126CrossRefGoogle Scholar
  16. Fulcrand H, Benabdeljalil C, Rigaud J, Cheynier V, Moutounet M (1998) A new class of wine pigments generated by reaction between pyruvic acid and grape anthocyanins. Phytochemistry 47(7):1401–1407CrossRefGoogle Scholar
  17. Giudici P, Zambonelli C, Passarelli P, Castellari L (1995) Improvement of wine composition with cryotolerant Saccharomyces strains. Am J Enol Vitic 46(1):143–147Google Scholar
  18. Gonzalez SS, Gallo L, Climent MD, Barrio E, Querol A (2007) Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii. Int J Food Microbiol 116(1):11–18. doi:10.1016/j.ijfoodmicro.2006.10.047 CrossRefGoogle Scholar
  19. Hayasaka Y, Birse M, Eglinton J, Herderich M (2007) The effect of Saccharomyces cerevisiae and Saccharomyces bayanus yeast on colour properties and pigment profiles of a Cabernet Sauvignon red wine. Aust J Grape Wine Res 13(3):176–185CrossRefGoogle Scholar
  20. Henick-Kling T (1993) Malolactic fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publisher, Amsterdam, pp 289–326Google Scholar
  21. Henick-Kling T, Park YH (1994) Considerations for the use of yeast and bacterial starter cultures: SO2 and timing of inoculation. Am J Enol Vitic 45(4):464–469Google Scholar
  22. Kishimoto M (1994) Fermentation characteristics of hybrids between the cryophilic wine yeast Saccharomyces bayanus and the mesophilic wine yeast Saccharomyces cerevisiae. J Ferment Bioeng 77(4):432–435. doi:10.1016/0922-338x(94)90019-1 CrossRefGoogle Scholar
  23. Kishimoto M, Shinohara T, Soma E, Goto S (1993) Selection and fermentation properties of cryophilic wine yeasts. J Ferment Bioeng 75(6):451–453. doi:10.1016/0922-338x(93)90094-o CrossRefGoogle Scholar
  24. Medina K, Boido E, Dellacassa E, Carrau F (2005) Yeast interactions with anthocyanins during red wine fermentation. Am J Enol Vitic 56(2):104–109Google Scholar
  25. Mercurio MD, Dambergs RG, Herderich MJ, Smith PA (2007) High throughput analysis of red wine and grape Phenolics—adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J Agric Food Chem 55(12):4651–4657. doi:10.1021/jf063674n CrossRefGoogle Scholar
  26. Naumov GI, Naumova ES, Martynenko NN, Masneuf-Pomarede I (2011) Taxonomy, ecology, and genetics of the Yeast Saccharomyces bayanus: a new object for science and practice. Microbiology 80(6):735–742. doi:10.1134/s0026261711060154 CrossRefGoogle Scholar
  27. Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology (UK) 143:203–218CrossRefGoogle Scholar
  28. Peng Z, Iland PG, Oberholster A, Sefton MA, Waters EJ (2002) Analysis of pigmented polymers in red wine by reverse phase HPLC. Aust J Grape Wine Res 8(1):70–75CrossRefGoogle Scholar
  29. Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729CrossRefGoogle Scholar
  30. Rankine BC (1966) Decomposition of L-malic acid by wine yeasts. J Sci Food Agric 17(7):312. doi:10.1002/jsfa.2740170707 CrossRefGoogle Scholar
  31. Redzepovic S, Orlic S, Sikora S, Majdak A, Pretorius IS (2002) Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett Appl Microbiol 35(4):305–310. doi:10.1046/j.1472-765X.2002.01181.x CrossRefGoogle Scholar
  32. Redzepovic S, Orlic S, Majdak A, Kozina B, Volschenk H, Viljoen-Bloom M (2003) Differenital malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int J Food Microbiol 83:49–61CrossRefGoogle Scholar
  33. Scudamore-Smith PD, Hooper RL, McLaren ED (1990) Color and phenolic changes of Cabernet Sauvignon wine made by simultaneous yeast/bacterial fermentation and extended pomace contact. Am J Enol Vitic 41(1):57–67Google Scholar
  34. Siebert TE, Smythe HE, Capone DL, Neuwöhner C, Pardon KH, Skouroumounis GK, Herderich MJ, Sefton MA, Pollnitz AP (2005) Stable isotope dilution analysis of wine fermentation products by HS = SPME-GC-MS. Anal Bioanal Chem 381:937–947CrossRefGoogle Scholar
  35. Somers TC, Evans ME (1975) Colour composition and red wine quality-the importance of low pH and low SO2. Aust Grapegrower Winemaker 136:62 (64, 72)Google Scholar
  36. Somers TC, Evans ME (1977) Spectral evaluation of young red wines: anthocyanin equilibria, total phenolics, free and molecular SO2, chemical age. J Sci Food Agric 28:279–287CrossRefGoogle Scholar
  37. Swiegers JH, Pretorius IS (2005) Yeast modulation of wine flavor. Adv Appl Microbiol 57:131–175CrossRefGoogle Scholar
  38. Swiegers JH, Bartowsky EJ, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11(2):139–173CrossRefGoogle Scholar
  39. Ugliano M, Henschke PA (2009) Yeasts and wine flavour. In: Moreno-Arribas MV, Polo MC (eds) Wine chemistry and biochemistry. Springer, New York, pp 313–392CrossRefGoogle Scholar
  40. Versari A, Boulton RB, Parpinello GP (2008) A comparison of analytical methods for measuring the color components of red wines. Food Chem 106(1):397–402CrossRefGoogle Scholar
  41. Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius I, Henschke P (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157CrossRefGoogle Scholar
  42. Volschenk H, Viljoen M, Grobler J, Bauer F, LonvaudFunel A, Denayrolles M, Subden RE, VanVuuren HJJ (1997) Malolactic fermentation in grape musts by a genetically engineered strain of Saccharomyces cerevisiae. Am J Enol Vitic 48(2):193–197Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Inmaculada Blazquez Rojas
    • 1
    • 3
  • Paul A. Smith
    • 2
  • Eveline J. Bartowsky
    • 2
  1. 1.Escuela Técnica Superior de Ingenieros Agrónomos de AlbaceteUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.The Australian Wine Research InstituteGlen Osmond (Adelaide)Australia
  3. 3.Laboratorio Control de DopajeAgencia Estatal AntidopjeMadridSpain

Personalised recommendations